Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16134
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMohrenschildt, Martin v.-
dc.contributor.authorWilson, Aaron M. E.-
dc.date.accessioned2014-10-22T19:34:20Z-
dc.date.available2014-10-22T19:34:20Z-
dc.date.issued2014-11-
dc.identifier.urihttp://hdl.handle.net/11375/16134-
dc.description.abstractMcMaster University in conjunction with an industrial partner has been designing wireless vibrational condition monitoring sensors for implementation on a vibrating screening machine used in mining applications. A limitation with the current sensor design is their dependency on battery power. In order for the sensors to provide real-time continuous streaming of acceleration data, an alternate power supply was required outside of traditional sources such as batteries or wired power. This thesis outlines the research and development of a power system that harvests the kinetic vibrational energy of a mining screen and converts it into electrical energy for use by a wireless sensor node. During development, multiple prototypes were built and evaluated under laboratory conditions. The core concept of the system is an eccentric pendulum mass excited by the external vibrations of the screening machine used to drive a stepper motor generator. The major design obstacle of the project was how to get the system to self initiate. Both a mechanical and an electrical solution were developed to solve this concern. The final prototype design is fully autonomous, able to react to the start up or shut-down of a screening machine, while also providing a continuous power supply to a wireless vibrational analysis sensor as tested in the lab. With minor optimization, this prototype can be turned into a commercial product for industrial implementation and sale.en_US
dc.language.isoenen_US
dc.subjectvibrating screensen_US
dc.subjectvibrational analysisen_US
dc.subjectpower harvestingen_US
dc.subjectpower generationen_US
dc.subjectwireless sensorsen_US
dc.subjectsensor nodesen_US
dc.titleDesign of a Vibrational Energy Harvesting System for Wireless Sensor Nodesen_US
dc.typeThesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
thesis.pdf
Open Access
fulltext5.88 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue