Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16045
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDalnoki-Veress, Kari-
dc.contributor.authorFowler, Paul-
dc.date.accessioned2014-10-07T18:54:45Z-
dc.date.available2014-10-07T18:54:45Z-
dc.date.issued2014-11-
dc.identifier.urihttp://hdl.handle.net/11375/16045-
dc.description.abstractThis is a 'sandwich thesis' consisting of four publications I contributed to during my M.Sc. work. These papers are the results of three types of experiments. Paper 1 studies the formation of non-uniform spin-cast polymer films. Spincoating is widely used to prepare thin polymer films of reproducible thickness. Typically spincoating produces highly uniform films, however in certain circumstances the process results in films with non-uniform surface topographies. The origin of such topographies is not fully understood and the formation of non-uniform films represents a practical problem in both research laboratories and industrial settings. In Paper 1 we find that the formation of non-uniform films is dependent on temperature. Furthermore, our results indicate that surface instabilities form as a result of the Marangoni effect. Finally, we demonstrate that non-uniformities in spin-cast films can be avoided simply by spincoating at lower temperatures. In Papers 2 and 3 we study the capillary driven levelling of polymer films with non-uniform surface geometries and compare our results to the theoretical predictions of the two-dimensional capillary-driven thin film equation. In Paper 2 we prepare polymer films with small surface perturbations and track their evolution above $T_g$ as the surface flattens. We find that all perturbations approach a universal self-similar attractor at long times, as predicted by theory. Our results also show that the time taken for the perturbations to convergence to the attractor depends on the initial volume of the perturbation. In Paper 3 we prepare samples with a rectangular trench geometry and follow their evolution above $T_g$ as surface forces cause the trench to fill in. At long times we observe a change in the levelling dynamics that is associated with a change in the boundary conditions governing the flow. In Paper 4 we use crazing experiments to probe two types of non-equilibrium entanglement networks. First, we study spincast polymer films and find that chains are stretched compared to equilibrium Gaussian chains. Furthermore, we find that the entanglement network relaxes on timescale on the order of one reptation time. Next, we stack two films in the glassy state to create a bilayer. Chains on either side of the mid-plane of the bilayer suffer a loss of entropy because of their restricted conformations. In the melt, the interface heals. We find it takes less than one reptation time for the bilayer film to become indistinguishable from a single film.en_US
dc.language.isoenen_US
dc.subjectPhysicsen_US
dc.subjectPolymersen_US
dc.subjectSoft Matteren_US
dc.subjectFluidsen_US
dc.titleThe effects of surface tension and entanglements in polymer films: Capillary driven flows, The Marangoni effect and crazingen_US
dc.typeThesisen_US
dc.contributor.departmentPhysics and Astronomyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
masters_thesis_pf.pdf
Open Access
Thesis9.52 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue