Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15481
Title: High Performance Granular Base and Subbase Materials Incorporating Reclaimed Asphalt Concrete Pavement
Authors: Luo, Cong
Advisor: Guo, Peijun
Department: Civil Engineering
Keywords: reclaimed asphalt pavement;granualr base and subbase;pavement engineering;resilient modulus;accumulative deformation;CBR
Publication Date: 2014
Abstract: This study focused on the material characterization of granular materials containing different percentages of “RAP”. A series of laboratory tests results were carried out to determine the physical and mechanical properties of natural aggregates and various aggregate-RAP blends. The results were used to evaluate methods to develop high-performance granular layer for pavement construction through proper compaction and control of RAP usage. The resilient modulus and accumulative deformation characteristics were determined in relation to RAP content, relative density, compaction method, stress level, stress state and the number of load applications. The effects of RAP content and density on the CBR values of aggregate-RAP blends under various conditions were also investigated. In addition, the effect of small strain cyclic loading on shear strength of aggregate-RAP blends was observed in laboratory tests. Results from this investigation demonstrated that: 1) adding RAP to natural aggregates may increase the resilient modulus of natural aggregates, and optimum content can be found to achieve the highest resilient modulus; 2) resilient modulus generally increases with density; higher density of aggregate-RAP blends can be achieved by using methods combining vibration and static loading. 3) deviatoric stress has more pronounced influence on accumulative deformation than confining pressure. 4) proper compaction method can reduce accumulative deformation of samples. 5) addition of RAP into aggregates results in little change in accumulative deformation when the RAP content is less than a threshold. 6) CBR value decreases with increasing RAP content and decreasing compaction effort or compacted dry density. 7) shear strength of an aggregate-RAP blend tends to increase after small strain cyclic loading.
URI: http://hdl.handle.net/11375/15481
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
HIGH PERFORMANCE GRANULAR BASE AND SUBBASE MATERIALS INCORPORATING RECLAIMED ASPHALT CONCRETE PAVEMENT.pdf
Open Access
thesis4.77 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue