Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15415
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHoare, Todd-
dc.contributor.authorPatenaude, Mathew-
dc.date.accessioned2014-07-08T19:44:59Z-
dc.date.available2014-07-08T19:44:59Z-
dc.date.issued2014-11-
dc.identifier.urihttp://hdl.handle.net/11375/15415-
dc.description.abstractChemically cross-linked hydrogels (chemical gels) offer a number of enhanced properties over their physical counterparts, particularly in biomedical applications such as drug delivery, tissue engineering, and cell encapsulation. Conventional chemical gels are generally too elastic to be introduced into the body without requiring surgical implantation, making them challenging to use in a clinical context. In response, this thesis is focused on developing injectable analogues of conventional hydrogel-based biomaterials as well as advanced, engineered injectable hydrogels, enabling the facile use of these hydrogels in biomedical applications. Cross-linking is achieved using hydrazone chemistry, in which one precursor is functionalized with aldehyde groups and the other is functionalized with hydrazide groups. Following coextrusion of the reactive precursors, a stable hydrogel network spontaneously forms within seconds. By employing this chemistry as a standard in all of this work, a number of injectable hydrogel systems with well-defined properties (including swelling, drug loading and release, optical properties, gel formation and degradation kinetics, response to the temperature of the surrounding environment, and tissue response) have been generated that can be tuned by rationally varying the charge content in the precursor polymers, the number of cross-linking functional groups used, the reactivity of the electrophilic cross-linking units, and the length and number of hydrophobic affinity domains present within the gels. This work therefore presents a series of independent methods for customizing hydrogels so that they may be adapted to a number of different biomedical applications.en_US
dc.language.isoen_USen_US
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectInjectable hydrogels, organic synthesis, polymer chemistry, biomaterials, drug deliveryen_US
dc.titleDesigning Injectable Hydrogel Biomaterials with Highly-Tunable Propertiesen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeDissertationen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Mathew Patenaude PhD Thesis.pdf
Open Access
PhD Thesis for Mathew Patenaude -- Complete document5.3 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue