Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15291
Title: TRUNCATIONS OF THE RESPONSE REGULATOR AGRA INHIBIT STAPHYLOCOCCUS AUREUS QUORUM SENSING
Authors: Ruyter, Alexandra L.
Advisor: Mahony, James
Bowdish, Dawn
Elliot, Marie
Department: Medical Sciences (Molecular Virology and Immunology Program)
Keywords: Staphylococcus aureus;quorum sensing;dominant negative decoy;peptide mimetic;inhibition;Medical Sciences;Medical Sciences
Publication Date: Oct-2013
Abstract: <p>Virulence in <em>Staphylococcus aureus </em>is mediated by the <em>accessory gene regulator </em>(agr) quorum sensing system. This regulatory system is activated by a secreted thiolactone peptide termed autoinducing peptide (AIP) and its receptor histidine kinase, AgrC. Interaction of extracellular AIP with a cognate AgrC receptor generates an intracellular signal that is transduced by conformational changes and phosphorylation events in a two-component sensor histidine kinase system. At the heart of the <em>agr</em> quorum-sensing cascade lies the two-component histidine kinase, AgrC, and the response regulator protein, AgrA. Interaction of AgrC and AgrA, and the resulting phosphotransfer event results in expression from the divergent promoters P2 and P3, inducing expression of the master quorum-sensing regulator RNAIII and upregulating the <em>agr</em> operon respectively. Signal transduction systems function as intracellular information-processing pathways that link sensation of external stimuli to specific adaptive processes. In <em>S. aureus</em> , these include the up-regulation of virulence factors and hemolysis production, biofilm formation, and colonization-based regulation of surface proteins and adhesion factors. As such, the interactions of these systems have become key targets in the design of small inhibitor compounds.</p> <p>Through the creation of a protein truncation series, we proposed the development of a small protein for the inhibition of key protein-protein interactions involved in <em>S. aureus</em> <em>agr</em> two-component signaling. Herein, we demonstrate the efficacy of these protein truncations as dominant negative inhibitors of AgrC:AgrA interactions, likely acting as a dominant phosphoacceptor in place of endogenous AgrA. We provide evidence of this function through <em>in vitro </em>hemolysis assays and phosphate-detection based gel electrophoresis.</p>
URI: http://hdl.handle.net/11375/15291
Identifier: opendissertations/8316
9445
4629518
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Access is allowed from: 2014-09-24
4.72 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue