Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/14101
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCarette, Jacquesen_US
dc.contributor.authorSzymczak, Danielen_US
dc.date.accessioned2014-06-18T17:06:19Z-
dc.date.available2014-06-18T17:06:19Z-
dc.date.created2014-04-21en_US
dc.date.issued2014-04en_US
dc.identifier.otheropendissertations/8928en_US
dc.identifier.other10005en_US
dc.identifier.other5506238en_US
dc.identifier.urihttp://hdl.handle.net/11375/14101-
dc.description.abstract<p>This thesis presents the design and implementation of a source code generator for dealing with Bayesian statistics. The specific focus of this case study is to produce usable source code for handling Hidden Markov Models (HMMs) from a Domain Specific Language (DSL).</p> <p>Domain specific languages are used to allow domain experts to design their source code from the perspective of the problem domain. The goal of designing in such a way is to increase the development productivity without requiring extensive programming knowledge.</p>en_US
dc.subjectcode generationen_US
dc.subjecthidden markov modelsen_US
dc.subjectdomain specific languagesen_US
dc.subjectmachine learningen_US
dc.subjectbayesian statisticsen_US
dc.subjectOther Engineeringen_US
dc.subjectOther Engineeringen_US
dc.titleGenerating Learning Algorithms: Hidden Markov Models as a Case Studyen_US
dc.typethesisen_US
dc.contributor.departmentSoftware Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
675.7 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue