Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13959
Title: CATECHOLAMINE-REGULATED PROTEIN 40 IN PARKINSON’S DISEASE
Authors: Lubarda, Jovana
Advisor: Gabriele, Joseph
Mishra, Ram
Doering, Laurie
Department: Neuroscience
Keywords: Catecholamine-regulated protein 40;Parkinson’s disease;movement disorder;protein cloning;oxidative stress;Diagnosis;Medical Biochemistry;Medical Molecular Biology;Nervous System Diseases;Therapeutics;Diagnosis
Publication Date: Apr-2014
Abstract: <p>Parkinson’s disease (PD) is a complex neurodegenerative movement disorder involving protein misfolding, mitochondrial dysfunction, and oxidative stress. The current dissertation, motivated by a lack of valid biomarkers and sustainable therapies, examined the potential application of a novel target for therapeutics and diagnostics of PD — the multifunctional, heat-shock like protein Catecholamine-Regulated Protein 40 (CRP40). The goal of this program of research was to elucidate further the implications of CRP40 in PD using a variety of molecular biology, bioinformatics, and clinical approaches through integrative collaborations with academia, government, and industry partners to translate scientific findings into real world solutions. Chapters 2 and 3 explored the potential therapeutic use and structure-function relationships of CRP40 through elucidating the smallest functional piece of this protein that was six times smaller, and validating a negative control for these experiments (Heat-Shock Protein 47). These initiatives could eventually lead to a small drug that could cross the blood-brain barrier and be targeted to the specific brain regions affected in PD. Chapter 4 examined the potential mechanisms of CRP40, and suggested that this protein may protect neurons from oxidative stress, maintain energy levels, and mitochondrial homeostasis, with important future implications for a variety of disorders. Finally, Chapter 5 presented compelling evidence for the potential use of CRP40 as a valid biomarker for early detection of PD and monitoring of disease progression. Overall, findings suggest that CRP40 may be a critical target for future breakthroughs in the diagnosis and treatment of PD.</p>
URI: http://hdl.handle.net/11375/13959
Identifier: opendissertations/8791
9858
5060668
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
25.74 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue