Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13958
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLeigh, William J.en_US
dc.contributor.advisorDavid J. H. Emslie, Ignacio Vargas-Bacaen_US
dc.contributor.authorKostina, Svetlana S.en_US
dc.date.accessioned2014-06-18T17:05:42Z-
dc.date.available2014-06-18T17:05:42Z-
dc.date.created2014-02-04en_US
dc.date.issued2014-04en_US
dc.identifier.otheropendissertations/8790en_US
dc.identifier.other9859en_US
dc.identifier.other5061639en_US
dc.identifier.urihttp://hdl.handle.net/11375/13958-
dc.description.abstract<p>The complexation reactions of silylenes (SiMe<sub>2</sub>, SiPh<sub>2</sub> and SiMes<sub>2</sub>) and germylenes (GeMe<sub>2</sub>, GePh<sub>2</sub> and GeMes<sub>2</sub>) with a series of O-, S-, N- and P-donors have been studied in hexanes solution. The equilibrium constants for complexation of SiMes<sub>2</sub> and GeMes<sub>2</sub> with 7 Lewis bases were determined, and demonstrate that the silylene is more Lewis acidic than the germylene by ca. 1 kcal mol<sup>-1</sup>. Diethyl ether reacted with the six tetrellylenes with equilibrium constants that decrease in the order SiPh<sub>2</sub> > SiMe<sub>2</sub> > GePh<sub>2</sub> > GeMe<sub>2</sub> > SiMes<sub>2</sub> > GeMes<sub>2</sub>, establishing a trend in the Lewis acidities of the silylenes and germylenes. Experimental results are complemented by calculated (G4) binding enthalpies of the MMe<sub>2</sub>-donor complexes, which were found to correlate with Drago’s E and C parameters leading to the classification of SiMe<sub>2</sub> and GeMe<sub>2</sub> as borderline soft Lewis acids.</p> <p>A number of sigma-bond insertion reactions by transient silylenes was examined, namely the O-H, N-H and Si-O insertion reactions with alcohols, amines and siloxanes, respectively. In all cases the reactions were found to proceed via a two step mechanism in which the first step is a reversible formation of a Lewis acid-base complex. The second step was found to be a catalytic H-migration in the reactions with alcohols and amines; the catalysis by the alcohol is at least 10<sup>4</sup> times faster than that by the amine. Complexes of silylenes with alkoxysilanes and siloxanes transform into the final products via a unimolecular [1,2]-silyl migration.</p> <p>Chalcogen abstraction reactions by silylenes (SiMe<sub>2</sub>, SiPh<sub>2</sub>, SiTmp<sub>2</sub> and SiMes<sub>2</sub>) and germylenes (GeMe<sub>2</sub> and GePh<sub>2</sub>) from oxiranes (cyclohexene oxide (CHO) and propylene oxide (PrO)) and thiiranes (cyclohexene sulfide (CHS) and propylene sulfide (PrS)) were investigated by laser flash photolysis and steady-state photolysis methods. The results indicate that the reaction proceeds via a two step mechanism, in which the first step is a reversible complexation followed by a unimolecular decomposition of the complex to yield products of chalcogen abstraction, namely alkenes and the corresponding R<sub>2</sub>M=X transients (R = Me, Ph, Tmp and Mes, M = Si or Ge, X = O or S). Diphenylsilanethione was directly detected and identified on the basis of its spectra and reactivity with amines and alcohols. The O- and S- abstraction by silylenes proceed with ca. 50% efficiency; in contrast, no evidence for O-abstraction by GeMe<sub>2</sub> from CHO could be found, while propene was formed in ca. 35% yield in the reaction of GeMe<sub>2</sub> with PrS.</p>en_US
dc.subjectphotochemistryen_US
dc.subjectsilyleneen_US
dc.subjectgermyleneen_US
dc.subjectkineticsen_US
dc.subjectthermodynamicsen_US
dc.subjectspectroscopyen_US
dc.subjectInorganic Chemistryen_US
dc.subjectPhysical Chemistryen_US
dc.subjectInorganic Chemistryen_US
dc.titleMechanistic Aspects of the Complexation, Chalcogen Abstraction and Sigma Bond Insertion Reactions by Transient Silylenes and Germylenes in Solutionen_US
dc.typethesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
8.53 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue