Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13801
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHortelano, Gonzaloen_US
dc.contributor.advisorOfosu, Freden_US
dc.contributor.authorDodd, Megan J.en_US
dc.date.accessioned2014-06-18T17:05:19Z-
dc.date.available2014-06-18T17:05:19Z-
dc.date.created2013-04-22en_US
dc.date.issued2013en_US
dc.identifier.otheropendissertations/8630en_US
dc.identifier.other8832en_US
dc.identifier.other4057350en_US
dc.identifier.urihttp://hdl.handle.net/11375/13801-
dc.description.abstract<p>Hemophilia B patients may have frequent, spontaneous and life-threatening bleeds that are currently managed by an invasive and expensive treatment. Mesenchymal stem cells (MSCs) are increasingly being applied to clinically therapeutic strategies and lentiviral gene vectors have been shown to be safe and efficient tools for modifying stem cells for long-term expression of high levels of transgenes. In this study, MSCs were engineered with a lentivirus to express sustained and therapeutic levels of human FIX protein <em>in vitro </em>and in mice. The modified MSCs secreted human FIX protein at levels exceeding 4 μg/10<sup>6</sup> MSCs/24 h with high FIX coagulant activity of greater than 2.5 mIU/10<sup>6</sup> MSCs/24 h for 6 week <em>in vitro. </em>Functional FIX transgene was continually expressed by these cells when they were induced to differentiate into adipocyte, osteoblast and chondrocyte lineages <em>in vitro</em>. However, the modified MSCs transplanted via tail vein into NOD-SCID-γ mice expressed low levels of FIX <em>in vivo</em>. The transplantation procedure had an increased risk of death that was more pronounced in mice that received cell doses exceeding 2 million cells. Organ examinations suggested the deaths resulted from entrapment of MSCs in pulmonary capillaries. Modified MSCs encapsulated in alginate-PLL microcapsules and transplanted into the peritoneal cavity of both NOD-SCID-γ and hemophilia B mice at 9 million cells/mouse resulted in therapeutic expression around 100 ng of human FIX/mL of plasma only for a few days <em>in vivo</em> as human FIX expression quickly decreased to basal values by the end of the first week. Cultured <em>ex vivo</em>, human FIX expression by retrieved capsules indicated an innate immune response to the encapsulated cells prevented sustained expression of FIX. These investigations demonstrate that lentivirally modified MSCs have the potential to express therapeutic human FIX for sustained periods <em>in vitro</em>, even after their differentiation. However, they also highlight the challenges to overcome to optimize cell engraftment and survival following transplantation, and to minimize the immune responses associated with the xenogeneic translational<em> </em>models used.</p>en_US
dc.subjectgene therapyen_US
dc.subjecthemophiliaen_US
dc.subjectmesenchymal stem cellen_US
dc.subjectFactor IXen_US
dc.subjectlentivirusen_US
dc.subjectdifferentiationen_US
dc.subjectalginateen_US
dc.subjecttranslationalen_US
dc.subjectMolecular, cellular, and tissue engineeringen_US
dc.subjectMolecular, cellular, and tissue engineeringen_US
dc.titleLentiviral-Engineered Mesenchymal Stem Cells for Hemophilia B Gene Therapyen_US
dc.typethesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.89 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue