Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13554
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAdronov, Alexen_US
dc.contributor.advisorValliant, Johnen_US
dc.contributor.advisorBerti, Paulen_US
dc.contributor.authorMackey, Victoriaen_US
dc.date.accessioned2014-06-18T17:04:23Z-
dc.date.available2014-06-18T17:04:23Z-
dc.date.created2013-09-23en_US
dc.date.issued2013-10en_US
dc.identifier.otheropendissertations/8390en_US
dc.identifier.other9348en_US
dc.identifier.other4614418en_US
dc.identifier.urihttp://hdl.handle.net/11375/13554-
dc.description.abstract<p>Dendrimers provide an ideal scaffold for molecular imaging and therapeutics due to their mono-disperse structure and easily modifiable core, interior, and periphery. The controlled-stepwise synthesis leads to perfect, defined architectures that can easily be modified to incorporate targeting and imaging moieties. Specifically poly (2,2-bis(hydroxymethyl)-propanoic acid) (PMPA) dendrimer structures exhibit excellent aqueous solubility, low toxicity, biocompatibility and biodegradability, which are necessary requirements for an ideal <em>in vivo</em> imaging scaffold.</p> <p>Fever of unknown origin (FUO) is a common condition involving elevated temperatures above 101°F, which goes undiagnosed after a week of investigation. The primary causes of FUO are infection and cancer, however methods of diagnosis are non-specific and quite slow. Developing a method to detect bacterial infections, and therefore rule out more severe conditions such as cancer, would be very useful in diagnosis of this condition. Approximately two thirds of infection cases in hospitals are determined to be caused by one of six pathogens known as the ESKAPE pathogens and developing a molecular imaging probe that would detect these specific pathogens would be a very useful FUO diagnostic tool.</p> <p>Siderophores are naturally occurring molecules that exhibit a high affinity for Fe<sup>3+</sup>, and are effective at entering bacterial cells after complexing iron. In particular, Desferal, a commercially available siderophore used for iron chelation therapy, has been successfully modified, radiolabeled, and studied as an imaging agent. Dendrimers were modified with Desferal and used to investigate the effect of multivalent display of siderophores on a single macromolecular structure.<sup>1-3</sup></p> <p>We herein discuss the preparation of a series of siderophore-terminated PMPA dendrimers that were radiolabeled and studied to compare bacterial uptake between a monomeric siderophore and a macromolecule displaying multiple siderophores on its periphery. To introduce Desferal to the periphery of a dendrimer, activated p-nitrophenyl carbonates were used. A series of Desferal-terminated dendrimers of generations 1-3 was synthesized in yields of 59-89 % and evaluated for suitability as an infection-imaging probe.</p> <p>The Desferal-terminated dendrimer series was evaluated for its affinity to iron(III) and gallium(III), as well as tested for steric hindrance effects at the periphery. The series was successfully radiolabeled with <sup>67</sup>Ga using mild conditions and <em>in vitro</em> bacterial uptake studies were performed with <em>Staphylococcus aureus</em>, one of the ESKAPE pathogens, to determine if multivalency increases bacterial uptake.</p> <p>Preliminary results indicate that the poor water solubility of the Desferal-terminated dendrimer series needs to be improved in order to increase bacterial uptake of the compounds, however viable candidates for metal chelation were successfully produced.</p>en_US
dc.subjectDendrimersen_US
dc.subjectInfectionen_US
dc.subjectProbesen_US
dc.subjectPolymer Chemistryen_US
dc.subjectPolymer Chemistryen_US
dc.titleThe Synthesis of Dendrimer-Based Infection Imaging Probesen_US
dc.typethesisen_US
dc.contributor.departmentChemistryen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
8.51 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue