Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13536
Title: CHANGE DETECTION OF A SCENE FOLLOWING A VIEWPOINT CHANGE: MECHANISMS FOR THE REDUCED PERFORMANCE COST WHEN THE VIEWPOINT CHANGE IS CAUSED BY VIEWER LOCOMOTION
Authors: Comishen, Michael A.
Advisor: Sun, Hong-Jin
Bruce Milliken, Sue Becker
Department: Psychology
Keywords: change detection;proprioception;scene recognition;spatial reference direction;spatial updating;viewer locomotion;viewpoint change;Cognitive Psychology;Cognitive Psychology
Publication Date: Oct-2013
Abstract: <p>When an observer detects changes in a scene from a viewpoint that is different from the learned viewpoint, viewpoint change caused by observer’s locomotion would lead to better recognition performance compared to a situation where the viewpoint change is caused by equivalent movement of the scene. While such benefit of observer locomotion could be caused by spatial updating through body-based information (Simons and Wang 1998), or knowledge of change of reference direction gained through locomotion (Mou et al, 2009). The effect of such reference direction information have been demonstrated through the effect of a visual cue (e.g., a chopstick) presented during the testing phase indicating the original learning viewpoint (Mou et al, 2009).</p> <p>In the current study, we re-examined the mechanisms of such benefit of observer locomotion. Six experiments were performed using a similar change detection paradigm. Experiment 1 & 2 adopted the design as that in Mou et al. (2009). The results were inconsistent with the results from Mou et al (2009) in that even with the visual indicator, the performance (accuracy and response time) in the table rotation condition was still significantly worse than that in the observer locomotion condition. In Experiments 3-5, we compared performance in the normal walking condition with conditions where the body-based information may not be reliable (disorientation or walking over a long path). The results again showed a lack of benefit with the visual indicator. Experiment 6 introduced a more salient and intrinsic reference direction: coherent object orientations. Unlike the previous experiments, performance in the scene rotation condition was similar to that in the observer locomotion condition.</p> <p>Overall we showed that the body-based information in observer locomotion may be the most prominent information. The knowledge of the reference direction could be useful but might only be effective in limited scenarios such as a scene with a dominant orientation.</p>
URI: http://hdl.handle.net/11375/13536
Identifier: opendissertations/8372
9468
4640438
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.27 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue