Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13516
Title: Quaternary landform and sediment analysis of the Alliston area (southern Simcoe County), Ontario, Canada
Authors: Mulligan, Riley P.M
Advisor: Eyles, Carolyn H.
Department: Geography and Earth Sciences
Keywords: glacial geology;sedimentology;hydrogeology;glacial lakes;landsystems analysis;Geomorphology;Sedimentology;Geomorphology
Publication Date: Oct-2013
Abstract: <p>Urban expansion and agricultural growth are placing significant stresses on existing groundwater reserves hosted within Quaternary sediments in southern Ontario. Preserving the quality and quantity of groundwater resources requires a detailed knowledge of the three-dimensional distribution of subsurface geologic units. In this study, integrated analysis of surficial sediment exposures, geophysical and remotely-sensed data, and fully-cored boreholes in the Alliston region of southern Ontario has allowed for the identification of landform-sediment associations, or landsystems, which can be used to predict the nature of subsurface sediment types and to assist with the reconstruction of paleoenvironmental change in the region. The landsystems identified in the Alliston region can also be used as a foundation for the development of a stratigraphic framework for hydrogeological investigations.</p> <p>Nine landsystems were identified in the study area and include: i) bedrock escarpment, ii) gravel bench, iii) V-shaped valleys and fills, iv) streamlined uplands, v) low-relief uplands, vi) upland plains and scarps, vii) erosional amphitheatres, viii) hummocky terrain, and ix) lowland plains. These landsystems record the changing distribution of glacial, ice-marginal, glaciofluvial, glaciolacustrine, and post-glacial depositional systems that affected the region during the late Quaternary. The landsystems analysis approach provides a useful framework for discerning the spatiotemporal relationship of a complex suite of depositional systems. Analysis of the distribution and internal composition of landsystems in the study area has allowed the development of a preliminary risk assessment map for aquifer vulnerability in the region.</p> <p>Detailed analysis of 56 outcrop exposures in cutbanks along the Nottawasaga River within the former Lake Algonquin plain has led to the identification of six lithofacies associations (FA 1–6) that present a detailed record of environmental change during the deglacial period. The stratigraphy is floored by the Late Wisconsin Newmarket Till (FA 1) which is locally overlain by ice-proximal debris flows (FA 2). These glacial sediments are overlain by glaciolacustrine silt rhythmites (FA 3) that pass upwards into deltaic sand (FA 4) and channelized fluviodeltaic sand and gravel (FA 5). Lying above the fluvial deposits and capping the succession are widespread sand and silt rhythmites (FA 6), which coarsen up-section. These six facies associations provide a record of changing environmental conditions that existed during deglaciation of the region and give valuable insights into the nature of the evolution of glacial lakes Schomberg, Algonquin, and Nipissing. The deglacial environmental changes described from southern Simcoe County may be valuable analogues for the interpretation of regional-scale events that occurred in extensive lake basins in other formerly glaciated regions.</p> <p>Qualitative observations of groundwater discharge from sediment facies at outcrop faces along the Nottawasaga River have yielded important data on the internal heterogeneity of subsurface units. These data can be used to identify possible preferential groundwater flow pathways through both aquifer and aquitard units in the region. Understanding the geometry and interconnectedness of these subsurface sediments is essential for planning future water supply for growing urban communities and agricultural irrigation needs in the region and for the prediction of contaminant migration pathways.</p>
URI: http://hdl.handle.net/11375/13516
Identifier: opendissertations/8349
9363
4616467
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
11.02 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue