Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13509
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLaPierre, Ray R.en_US
dc.contributor.advisorHarold Haugen, Leyla Soleymanien_US
dc.contributor.authorYee, Robin J.en_US
dc.date.accessioned2014-06-18T17:04:15Z-
dc.date.available2014-06-18T17:04:15Z-
dc.date.created2013-09-22en_US
dc.date.issued2013-10en_US
dc.identifier.otheropendissertations/8340en_US
dc.identifier.other9334en_US
dc.identifier.other4612016en_US
dc.identifier.urihttp://hdl.handle.net/11375/13509-
dc.description.abstract<p>Be-doped InP nanowires were grown by the gold-assisted vapour-liquid-solid mechanism in a gas source molecular beam epitaxy system. The nanowires were characterized by scanning and transmission electron microscopy. With increased doping, the dependence of the length on diameter [L(D)] underwent an unusual transition from the diffusion-limited 1/D<sup>2</sup> relationship to one that increased before saturating. Doping influences on crystal structure and radial growth have been reported previously, but in the absence of these effects it is speculated that the beryllium introduces an increase in the steady-state chemical potential of the catalyst, and a barrier to nucleation. A model is presented relating the diffusion- and nucleation-limited regimes.</p> <p>Additionally, the progressive increase of dopant incorporation was verified by secondary ion mass spectrometry. Samples were transformed into a "bulk-like" material by spin-coating with cyclotene to enable depth profiling. Carrier concentrations were inferred through comparison with a thin film reference, and agreed in order of magnitude with the nominal doping values.</p> <p>Dopant activation was investigated through micro-photoluminescence experiments, and showed peak emissions between 1.49 eV and 1.50 eV for undoped samples, transitioning with increased doping to 1.45-1.46 eV. The difference between the dominant peak energies was consistent with differences reported for comparable epitaxially-grown thin film samples. Bandgap narrowing was also observed at high levels of doping, and was consistent with theoretical predictions.</p> <p>As a whole, the work presented here provides a different perspective on the effects of doping on nanowire growth, demonstrated through the specific system of Be-doped InP. The findings have implications for predictable and consistent nanowire device design, and suggestions for avenues of future research are provided.</p>en_US
dc.subjectNanoscience and Nanotechnologyen_US
dc.subjectNanoscience and Nanotechnologyen_US
dc.titleBe-Doping of MBE-Grown InP Nanowiresen_US
dc.typethesisen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.08 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue