Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13458
Title: Tectonomorphic and kinematic characterization of Neogene deformation in the southern Central Andes (23˚-28˚S, NW Argentina)
Authors: Daxberger, Heidi
Advisor: Riller, Ulrich
Boyze, Joe
Schwarcz, Henry
Department: Earth Sciences
Keywords: Central Andes;fault-slip analysis;kinematics;gravitational spreading;mountain front sinuosity;T-factor;Geology;Geomorphology;Other Earth Sciences;Sedimentology;Stratigraphy;Tectonics and Structure;Geology
Publication Date: Oct-2013
Abstract: <p>This thesis focuses on the tectonomorphologic evolution of the Central Andean Puna Plateau and its eastern foreland. The collective findings of fault-slip and tectonomorphic analyes help in understanding the mechanical behavior of non-collisional orogens at convergent plate boundaries and result in an improved Neogene tectonic record of the Central Andes.</p> <p>Fault-slip analysis indicates Neogene WNW-ESE horizontal shortening of the thickened crust of the Puna Plateau and Eastern Cordillera and simultaneous lateral gravitational spreading. The less thickened of Pampean Ranges continue to undergo horizontal shortening only. The importance of N-S extension in the kinematics of elevated parts of the Central Andes is underscored by the strike-slip components on prominent dip-slip faults. Strain axis configurations in the southern Central Andes are generally controlled by (1) overall WNW-ESE horizontal shortening imposed by plate convergence and (2) differences in crustal thickness, i.e., gravitational potential energy. Therefore, a geodynamic interpretations in which still increasing elevation and crustal thickness significantly influence upper-crustal kinematics of the southern Central Andes is suggested.</p> <p>To allow regional-scale tectonomorphic studies, including Valley-Width-to-Valley-Height (Vf) ratio and the Transverse-Topographic-Symmetry (T-) factor, an Esri ArcGIS compatible software tool was developed. This Geographical Information System (GIS)-based tool, was coded in Python to enable conversion to other ArcGIS versions. This herein presented first version of the tool is fully functioning and drastically reduces the otherwise long processing times.</p> <p>A qualitative main basin symmetry description, Mountain-Front-Sinuosity (Smf) indices, and Vf-ratios of second-order drainage basins, indicate ubiquitous Quaternary deformation on reverse and thrust faults in the southern Central Andes. The recorded Quaternary deformation strongly influences Quaternary landform development, as shown by main drainage basin asymmetries and second-order drainage basins shapes. However, non-systematic T-factor distribution for second-order basins indicates that basin asymmetry is subject to litholigcal variations.</p>
URI: http://hdl.handle.net/11375/13458
Identifier: opendissertations/8278
9377
4617478
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
22.54 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue