Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13455
Title: WASTE GLASS - A SUPPLEMENTARY CEMENTITIOUS MATERIAL
Authors: Federico, Lisa
Advisor: Chidiac, S. E.
Department: Civil Engineering
Keywords: SCM;waste glass;pozzolan;ASR;alkalinity;grinding;Civil Engineering;Civil Engineering
Publication Date: Oct-2013
Abstract: <p>This study investigates the feasibility of using waste glass as a supplementary cementitious material (SCM). By further defining some of the parameters by which waste glass may be incorporated into concrete as a cement replacement, the environmental, economical, and engineering benefits of this material may be realized. Past observations, including the production of alkali silica reaction (ASR) gel, and the lack of pozzolanic reactivity, have limited the acceptance of waste glass as a SCM,</p> <p>Mechanical treatment was used to improve reactivity and provide a particle size at which waste glass performs comparably to ground granulated blast furnace slag and nearly as well as silica fume. At 6.6 µm, the pozzolanic reactivity of waste glass was demonstrated through consumption of Ca(OH)<sub>2</sub> and heat of hydration. Waste glass at a larger particle size (16.5 µm) was as reactive as slag. Use of waste glass at 10% replacement of Portland cement by mass and at a particle size below 100 µm proved useful as a SCM.</p> <p>A relationship between pozzolanic and alkali silica reaction (ASR) was identified with intermediate phases of the reaction present. Calcium silicate hydrates (C-S-H) from the pozzolanic reaction have a Ca/Si ratio of 1.5-2. ASR products generally have a Ca/Si ratio of 0.01-1. The products observed with agglomeration of glass particles had a Ca/Si ratio from 0.5-2. The affects of silica concentration and alkalinity of the solution on the reaction products were explored.</p> <p>A reaction rim was identified around glass agglomerates where fluorescence was observed. The results indicate that ASR can be induced even in low alkalinity cement, and the rate of reaction influences both the characteristics and composition of the reaction product.</p>
URI: http://hdl.handle.net/11375/13455
Identifier: opendissertations/8275
9371
4616860
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.33 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue