Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13424
Title: PREPARATION AND PROPERTIES OF REVERSIBLE POLYMERS AND SELF-ASSEMBLY OF CARBON NANOTUBES
Authors: Mayo, James D.
Advisor: Adronov, Alex
Stover, Harald
Potter, David
Department: Chemistry and Chemical Biology
Keywords: Reversible polymers;Diels Alder;self-healing;nanoindentation;self-assembly;carbon nanotubes;Polymer Chemistry;Polymer Chemistry
Publication Date: Oct-2013
Abstract: <p>A series of bismaleimide and bisfuran monomers were synthesized and then combined to produce thermally reversible polymers. Reversibility was demonstrated through multiple heating and cooling cycles, and verified using <sup>1</sup>H NMR spectroscopy. Variation of the spacer chemistry in the monomers was found to profoundly influence the physical properties of the resulting polymers. A tripodal maleimide and furan system was then synthesized, but it was found that the incorporation of cross-linking into the polymer network did not significantly alter the mechanical properties of the resulting polymers.</p> <p>Dilute solutions of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends containing PS- or PMMA-functionalized single-walled carbon nanotubes (SWNT) were spin cast and annealed at 180°C for 12 h. Characterization of the annealed films by scanning Raman spectroscopy confirmed that the migration of the nanotubes in the films could be controlled using the appropriate functionality on the nanotubes, thus the PS-functionalized nanotubes were found to migrate to the PS domains, while the PMMA-functionalized nanotubes migrated to the PMMA domains.</p> <p>SWNTs were then functionalized using linear reversible polymers, resulting in significant solubilization of the nanotubes. Heating of this solution resulted in the collapse of the DA polymer, and precipitation of the dissolved nanotubes, illustrating the reversible nature of the polymers, and their influence on carbon nanotube solubilization.</p>
URI: http://hdl.handle.net/11375/13424
Identifier: opendissertations/8244
9321
4608967
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.27 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue