Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13423
Title: Transport of H+, Na+ and K+ across the posterior midgut of blood-fed mosquitoes (Aedes aegypti)
Authors: Pacey, Evan K.
Advisor: O’Donnell, Michael
Nurse, Colin
Department: Biology
Keywords: blood meal;postprandial diuresis;epithelial transport;digestion;transport inhibitor;channel blocker;Comparative and Evolutionary Physiology;Comparative and Evolutionary Physiology
Publication Date: Oct-2013
Abstract: <p>Mosquitoes pose significant threats to human health because they act as vectors for disease causing viruses and protozoans. Indeed, <em>Aedes aegypti</em> is known as the Yellow Fever Mosquito because of its role as a vector for viral infections that kill thousands of people each year. A more thorough understanding of mosquito physiology will aid development of novel control strategies. Previous work on ion transport across the midgut has been focused primarily on larval <em>A. aegypti</em>, while research on the midgut of the adult stage is less complete. The posterior midgut of the adult female is of particular interest because it is used for the storage and digestion of the blood meal which is required for the production of eggs. This study used an array of electrophysiological methodologies such as the Scanning Ion Electrode Technique (SIET) in order to elucidate the patterns and mechanisms of Na<sup>+</sup>, H<sup>+</sup> and K<sup>+</sup> transport across the posterior midgut at intervals during postprandial diuresis and digestion of the blood meal. Measurements of transepithelial potential indicated that the lumen was at its most negative (-13.2 mV) three hours after the blood meal and then gradually became less negative during the time course of digestion. Na<sup>+</sup> was absorbed (from lumen to bath) at all intervals after the blood meal (6 min, 30 min, 2h, 24 h); calculations of the electrochemical potential indicated that absorption required active transport. H<sup>+</sup> absorption at all times (6 min – 48 h) after the blood meal was also active (<em>i.e.</em> against the electrochemical gradient for H<sup>+</sup>) and was greatly reduced by inhibition of carbonic anhydrase. K<sup>+</sup> transport across the midgut exhibited two distinct phases. During diuresis, luminal concentrations of K<sup>+</sup> were in the range 24 – 28 mM and secretion into the midgut was opposed by the electrochemical gradient, indicating active transport. After diuresis, during blood meal digestion, concentrations of K<sup>+</sup> in the midgut contents were high (95 – 134 mM) and absorption of K<sup>+</sup> was favoured by the electrochemical gradient. K<sup>+</sup> absorption was sensitive to the channel blocker Ba<sup>2+</sup> during this period.</p>
URI: http://hdl.handle.net/11375/13423
Identifier: opendissertations/8243
9320
4608651
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.51 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue