Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13381
Title: Exploring Microbial Communities and Carbon Cycling within the Earth's Deep Terrestrial Subsurface
Authors: Simkus, Danielle N.
Advisor: Slater, Greg
Department: Geography and Earth Sciences
Keywords: Phospholipid fatty acid (PLFA);Carbon isotope analysis;Deep terrestrial subsurface;Microbiology;Carbon cycling;Astrobiology;Biogeochemistry;Biogeochemistry
Publication Date: Oct-2013
Abstract: <p>Investigating the presence of microbial communities in the Earth's deep terrestrial subsurface and the metabolic processes taking place in these environments provides insight into the some of the ultimate limits for life on Earth, as well as the potential for microbial life to exist within the subsurface of other planetary bodies. This Master's thesis project utilized phospholipid fatty acid (PLFA) analysis, in combination with carbon isotope analyses (δ<sup>13</sup>C and Δ<sup>14</sup>C), to explore the presence and activity of microbial communities living within deep terrestrial subsurface fracture water systems and low permeability, deep sedimentary rocks. Deep fracture water systems, ranging from 0.9 to 3.2 km below land surface, were sampled for microbial communities via deep mine boreholes in the Witwatersrand Basin of South Africa. PLFA concentrations revealed low biomass microbial communities, ranging from 2x10<sup>1</sup> to 5x10<sup>4</sup> cells per mL and the PLFA profiles contained indicators for environmental stressors, including high temperatures and nutrient deprivation. δ<sup>13</sup>C and Δ<sup>14</sup>C analyses of PLFAs and potential carbon sources (dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and methane) identified microbial utilization of methane in some systems and utilization of DIC in others. Evidence for microbial oxidation of methane and chemoautotrophy in these systems is consistent with a self-sustaining deep terrestrial subsurface biosphere that is capable of surviving independent of the photosphere. Viable microbial communities were also identified within deep (334 to 694 m depth) sedimentary rock cores sampled from the Michigan Basin, Canada. PLFA analyses revealed microbial cell densities ranging from 1-3 x 10<sup>5</sup> cells/mL and identified PLFA indicators for environmental stressors. These results demonstrate the ubiquity of microbial life in the deep terrestrial subsurface and provide insight into microbial carbon sources and cycling in deep microbial systems which may persist in isolation over geologic timescales.</p>
URI: http://hdl.handle.net/11375/13381
Identifier: opendissertations/8201
9163
4523836
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.92 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue