Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13351
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSprung, Donalden_US
dc.contributor.authorSafari, Akbaren_US
dc.date.accessioned2014-06-18T17:03:42Z-
dc.date.available2014-06-18T17:03:42Z-
dc.date.created2013-09-18en_US
dc.date.issued2013-10en_US
dc.identifier.otheropendissertations/8172en_US
dc.identifier.other9300en_US
dc.identifier.other4599074en_US
dc.identifier.urihttp://hdl.handle.net/11375/13351-
dc.description.abstract<p>WKB theory provides a plausible link between classical mechanics and quantum mechanics in its semi-classical limit. Connecting the WKB wave function across the turning points in a quantum well, leads to the WKB quantization condition. In this work, I focus on some improvements and recent developments related to the WKB quantization condition. First I discuss how the combination of super-symmetric quantum mechanics and WKB, gives the SWKB quantization condition which is exact for a large class of potentials called shape invariant potentials. Next I turn to the fact that there is always a probability of refection when the potential is not constant and the phase of the wave function should account for this refection. WKB theory ignores refection except at turning points. I explain the work of Friedrich and Trost who showed that by including the correct "refection phase" at a turning point, the WKB quantization condition can be made to give exact bound state energies. Next I discuss the work of Cao and collaborators which takes refection of the wave function into account everywhere. We show that Cao's method provides a way to compute the F-T refection phase. Finally I discuss a paper of Fabre and Guery-Odelin who used the exponential potential to study the accuracy of WKB. In their results the accuracy deteriorates as the energy increases, which is inconsistent with Bohr's correspondence principle. Using the Friedrich and Trost method, we resolved this problem.</p>en_US
dc.subjectQuantum Physicsen_US
dc.subjectQuantum Physicsen_US
dc.titleSome Recent Developments in WKB Approximationen_US
dc.typethesisen_US
dc.contributor.departmentPhysics and Astronomyen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.09 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue