Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13332
Title: THE ROLE OF THE GROUP ENVIRONMENT IN THE EVOLUTION OF GALAXIES: INVESTIGATING GROUP DYNAMICS AND PRE-PROCESSING
Authors: Hou, Annie
Advisor: Parker, Laura C.
Harris, William E.
Sill, Alison
Department: Physics and Astronomy
Keywords: Astronomy;galaxy evolution;galaxy groups;dynamics;External Galaxies;External Galaxies
Publication Date: Oct-2013
Abstract: <p>The influence of environment in galaxy evolution has been observed in a wide range of environments, where in general red quiescent early-type galaxies preferentially reside in high-density regions. The aim of this thesis is to understand the role that galaxy groups, and in particular group dynamics, play in galaxy evolution.</p> <p>We examine substructure in rich groups at intermediate redshifts and find that 4/15 groups contain substructure, which is preferentially found on the group outskirts. Galaxies in groups with substructure have properties similar to the field, while the galaxies in groups with no substructure are similar to cluster populations. These results indicate that substructure galaxies do not feel the effects of the environment until well inside the group potential.</p> <p>We then study the evolution of group dynamics to z~1 and find that the fraction of non-Gaussian groups increases with redshift, while the fraction of groups with substructure remains constant. Additionally, we find that the quiescent fraction correlates with galaxy stellar mass, but has little or no dependence on group dynamical mass or state. However, we do observe some correlation between substructure and quiescent fraction for low mass galaxies.</p> <p>Finally, we investigate infalling subhalo galaxies to probe the importance of pre-processing in galaxy evolution. At r200 > 2, galaxies in subhaloes show enhanced quenching, when compared to non-subhalo galaxies. At these radii, the infall population dominates, indicating that enhanced quenching is due to the infalling subhalo population. Additionally, the fraction of groups with subhaloes is a function of halo mass, where more massive systems have a higher fraction of subhaloes. We conclude that for groups, pre-processing is insignificant; however, for the most massive clusters a significant fraction (∼ 25%) of the member galaxies have been pre-processed.</p>
URI: http://hdl.handle.net/11375/13332
Identifier: opendissertations/8150
9270
4586889
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
16.07 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue