Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13284
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSlater, Greg F.en_US
dc.contributor.authorSoles, Sarah A.en_US
dc.date.accessioned2014-06-18T17:03:31Z-
dc.date.available2014-06-18T17:03:31Z-
dc.date.created2013-08-29en_US
dc.date.issued2013-10en_US
dc.identifier.otheropendissertations/8104en_US
dc.identifier.other9162en_US
dc.identifier.other4523198en_US
dc.identifier.urihttp://hdl.handle.net/11375/13284-
dc.description.abstract<p>Modern microbialites provide the opportunity to explore the influences of biology on microbialite formation and understand how biosignatures can be preserved in these structures. In this study, we used the isotopic compositions (δ<sup>13</sup>C) of phospholipid fatty acids (PLFAs) and their structurally-defined profiles, in conjunction with calcium carbonate isotopic compositions and imaging to evaluate microbial autotrophic and heterotrophic processes associated with freshwater microbialites from Kelly Lake, British Columbia. This was done to determine what types of metabolism may have been influencing microbialite growth and whether a biosignature of this process was preserved. In addition, PLFA profiles from a microbialite-derived pure culture were analyzed under various growth conditions to assess environmental influences on microbial PLFA composition.</p> <p>Although the majority of the δ<sup>13</sup>C values of Kelly Lake microbialite surface carbonates fell within the range predicted for equilibrium precipitation, samples collected from 26 m were found to have enriched δ<sup>13</sup>C<sub>carb</sub> values and are likely a biosignature of autotrophy at this depth. PLFA profiles and δ<sup>13</sup>C<sub>PLFA </sub>values also supported the predominance of autotrophy, however, they indicated that heterotrophic organisms were also present. This data suggests that autotrophic metabolisms have influenced the local geochemistry in the past, at least at 26 m, and are likely substantial contributors to microbialite growth.</p> <p>Changes in temperature, pH, NaCl concentrations, and cell densities were found to induce variations in the PLFA profiles of the <em>Exiguobacterium</em> strain RW2. The degree of PLFA unsaturation changed in each of the different culture conditions, and was predominantly adjusted through alterations in the branched monoenoic PLFAs, particularly i-17:1Δ<sup>5</sup>. These results highlight the difficulties associated with applying PLFA profiles as evidence for shifts in a microbial community composition, since altered growth conditions can induce intra-specific PLFA changes.</p>en_US
dc.subjectmicrobialiteen_US
dc.subjectbiosignatureen_US
dc.subjectPLFAen_US
dc.subjectKelly Lakeen_US
dc.subjectBiogeochemistryen_US
dc.subjectEnvironmental Chemistryen_US
dc.subjectOrganic Chemistryen_US
dc.subjectBiogeochemistryen_US
dc.titleTHE CARBON ISOTOPE SYSTEMATICS AND PHOSPHOLIPID FATTY ACID PROFILES OF MICROBIALITE-ASSOCIATED COMMUNITIESen_US
dc.typethesisen_US
dc.contributor.departmentGeography and Earth Sciencesen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.07 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue