Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13277
Title: The Investigation of Theta-burst Stimulation over Primary Somatosensory Cortex on Tactile Temporal Order Judgment
Authors: Lee, Kevin
Advisor: Nelson, Aimee
Jim Lyons, Richard Staines
Department: Kinesiology
Keywords: Temporal Order judgment;Transcranial Magnetic Stimulation;Primary Somatosensory Cortex;Behavioral Neurobiology;Motor Control;Other Kinesiology;Systems Neuroscience;Behavioral Neurobiology
Publication Date: Oct-2013
Abstract: <p>Temporal order judgment (TOJ) refers to one’s ability to successively report the temporal order of two tactile stimuli delivered to independent skin sites. The brain regions involved in processing TOJ remain unclear. Research has shown that TOJ performance can be impaired with a conditioning background stimuli and this phenomenon, known as TOJ synchronization (TOJ-S), is suggested to be mediated by inhibitory neural mechanisms within the primary somatosensory cortex (SI) that create perceptual binding across the two skin sites. Continuous theta-burst stimulation (cTBS) over SI impairs tactile spatial and temporal acuity. This dissertation examines the effects of cTBS on TOJ and TOJ-S performance on the hand. In Experiment 1, TOJ and TOJ-S were measured from the right hand before and for up to 34 minutes following 50 Hz cTBS over SI. In Experiment 2, same measurements were obtained bilaterally for up to 42 minutes following 30 Hz cTBS over SI. Compared to pre-cTBS values, TOJ was impaired for up to 42 minutes on the right hand following 30 Hz cTBS. TOJ-S performance was improved for up to 18 minutes on the right hand following 50 Hz cTBS. These experiments reveal two major findings. First, cTBS act upon different inhibitory circuits that are suggested to mediate TOJ and TOJ-S. Second, cTBS parameters may dictate cTBS effects over SI excitability. The findings of this work not only emphasize the significant contributions of SI on tactile temporal perception, it provides novel insight of the underlying neural mechanisms of cTBS effects on SI cortical excitability.</p>
URI: http://hdl.handle.net/11375/13277
Identifier: opendissertations/8098
9138
4502979
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.1 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue