Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13128
Title: Application of Compressed Sensing to Single Voxel J Resolved Magnetic Resonance Spectroscopy: Simulation and In Vitro Results
Authors: Geraghty, Benjamin
Advisor: Noseworthy, Michael
Department: Electrical and Computer Engineering
Keywords: Compressed Sensing;JPRESS;Magnetic Resonance Spectroscopy;ProFit;Electrical and Computer Engineering;Electrical and Computer Engineering
Publication Date: 2013
Abstract: <p>Localized Magnetic Resonance Spectroscopy is a non-invasive tool that o↵ers insight into physiological status via signals arising from biological compounds. Unambiguous evaluation of said signals, however; is intrinsically limited by self interference through signal overlap. J Resolved Spectroscopy introduces an additional dimension to the measured signal which reduces overlap at the cost of increasing the scan duration. Compressed Sensing is a growing mathematical framework that asserts that under certain conditions, if a signal admits a sparse representation then it can be recovered from fewer measurements than required by classical signal theory. This framework has been successfully applied in high resolution Nuclear Magnetic Resonance experiments, justifying the investigation into its applicability in the realm of localized Magnetic Resonance Spectroscopy. The problem is addressed by optimizing the Compressed Sensing recovery on model spectra and evaluated in vitro through a parametric approach.</p>
Description: <p>Localized Magnetic Resonance Spectroscopy is a non-invasive tool that offers insight into physiological status via signals arising from biological compounds. Unambiguous evaluation of said signals, however; is intrinsically limited by self interference through signal overlap. J Resolved Spectroscopy introduces an additional dimension to the measured signal which reduces overlap at the cost of increasing the scan duration. Compressed Sensing is a growing mathematical framework that asserts that under certain conditions, if a signal admits a sparse representation then it can be recovered from fewer measurements than required by classical signal theory. This framework has been successfully applied in high resolution Nuclear Magnetic Resonance experiments, justifying the investigation into its applicability in the realm of localized Magnetic Resonance Spectroscopy. The problem is addressed by optimizing the Compressed Sensing recovery on model spectra and evaluated in vitro through a parametric approach.</p>
URI: http://hdl.handle.net/11375/13128
Identifier: opendissertations/7954
8857
4086435
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.22 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue