Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13016
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHamed, M.S.en_US
dc.contributor.authorAbdElHady, Ahmeden_US
dc.date.accessioned2014-06-18T17:01:55Z-
dc.date.available2014-06-18T17:01:55Z-
dc.date.created2013-06-11en_US
dc.date.issued2013-10en_US
dc.identifier.otheropendissertations/7851en_US
dc.identifier.other8935en_US
dc.identifier.other4215419en_US
dc.identifier.urihttp://hdl.handle.net/11375/13016-
dc.description.abstract<p>An experimental investigation has been carried out in order to investigate the effect of surface initial conditions, concentration, nanoparticles size and deposition pattern on pool boiling and jet impingement boiling of nanofluids. A flat copper surface with initial conditions of Ra = 420 nm, Ra = 80 nm and Ra = 20 nm has been used as the boiling surface. Al<sub>2</sub>O<sub>3</sub> and CuO nanoparticles have been used with de-ionized water to prepare the nanofluids. At 0.01 vol. % concentration of Al<sub>2</sub>O<sub>3,</sub> the rate of heat transfer enhanced by 41% and 34% for the Ra = 80 nm and Ra = 20 nm, respectively. While, in the case of Ra = 420 nm, the rate of heat transfer deteriorated by 49%. At 0.005 vol. % concentration the rate of heat transfer deteriorated for all three surfaces. It is believed that the deterioration was due to the uniformity of the deposition. Using 0.01 vol. % concentration of CuO nanofluids resulted in the same trend, however, the rate of heat transfer is less compared to using Al<sub>2</sub>O<sub>3 </sub>nanofluids. For example, in the case of Ra = 80 nm, the rate of heat transfer was reduced by 14%.</p> <p>The effect of nanoparticles size has been investigated by changing the nanoparticles size from 50 nm to 10 nm. The change in nanoparticles size resulted in a significant deterioration in the rate of heat transfer for all three surfaces. It is believed that the deterioration was due to the deposition uniformity. As the deposition uniformity has been found to be a major factor that affects the rate of heat transfer, new approach was introduced to quantify the effect of the rate of deposition on the pool boiling of nanofluids.</p> <p>An experimental investigation has been carried out in order to investigate using submerged impingement jet on the rate of heat transfer using nanofluids. At of 0.005 vol. % concentration of Al<sub>2</sub>O<sub>3</sub>, surface with Ra = 80 nm, jet to surface vertical distance of 3 mm and Reynolds number of 101311, the rate of heat transfer deteriorated by 19%.</p> <p>Comparing the pool boiling and jet impingement boiling of nanofluids showed that, in the case of jet impingement boiling, the rate of heat transfer was enhanced compared to the case of pool boiling and the deposition was less. However, jet impingement boiling experiments showed deterioration in the rate of heat transfer by 19% compared with pure water.</p>en_US
dc.subjectPool Boilingen_US
dc.subjectNanofluidsen_US
dc.subjectSurface roughnessen_US
dc.subjectSubmerged Impingement jeten_US
dc.subjectHeat Transfer, Combustionen_US
dc.subjectOther Mechanical Engineeringen_US
dc.subjectHeat Transfer, Combustionen_US
dc.titleEXPERIEMENTAL INVESTIGATION OF POOL BOILING AND BOILING UNDER SUBMERGED IMPINGING JET OF NANOFLUIDSen_US
dc.typethesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.53 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue