Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12893
Title: MODELING AND MECHANISTIC INSIGHTS INTO THE DEVELOPMENT OF ALLERGIC AIRWAY RESPONSES TO HOUSE DUST MITE
Authors: Llop, Guevara Alba
Advisor: Jordana, Manel
Martin R. Stämpfli, Paul M. O’Byrne, Anthony J. Coyle
Department: Medical Sciences (Molecular Virology and Immunology Program)
Keywords: allergic asthma;house dust mite allergens;mouse model;airway inflammation;allergic sensitization;Th2 immunity;Biological Phenomena, Cell Phenomena, and Immunity;Biological Phenomena, Cell Phenomena, and Immunity
Publication Date: Apr-2013
Abstract: <p>Allergic asthma is a chronic and complex disease of the airways characterized by dysregulated immune-inflammatory responses to aeroallergens and reversible airflow obstruction. The prevalence and economic burden of allergic asthma have increased substantially over the last five decades. Despite remarkable progress in our understanding of the immunobiology and pathophysiology of asthma, the ontogeny of the disease remains elusive. As a result, there is a lack of effective preventative strategies. Here, we used a murine model of allergic asthma to house dust mite (HDM), the most pervasive indoor aeroallergen worldwide to address issues pertaining to the development of allergic asthma. First, we provided a comprehensive computational view of the impact of dose and length of HDM exposure on both local and systemic allergic outcomes (Chapter 2). Parameters, such as thresholds of responsiveness, and non-linear relationships between allergen exposure, allergic sensitization and airway inflammation were identified. We, then, investigated molecular signatures implicated in the onset of allergic responses (Chapter 3). HDM exposure was associated with production of the epithelial-associated cytokines TSLP, IL-25 and IL-33. However, only IL-33 signaling was necessary for intact Th2 immunity to HDM, likely because of its superior ability to induce the critical co-stimulatory molecule OX40L on dendritic cells and expand innate lymphoid cells. Lastly, as individuals are most likely exposed to allergens concomitantly to other environmental immunogenic agents, we studied the impact of an initial immune perturbation on allergic responses to sub-threshold amounts of HDM (Chapter 4). We showed that transient expression of GM-CSF in the airway substantially lowers the threshold of allergen required to generate robust, HDM-specific Th2 immunity, likely through increasing IL-33 production from alveolar type II cells. These studies favor a paradigm whereby distinct molecular pathways can elicit type 2 immunity, intimating the need to classify asthma into distinct clinical subsets.</p>
URI: http://hdl.handle.net/11375/12893
Identifier: opendissertations/7740
8798
3968594
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
9.97 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue