Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12856
Title: Characterization and Alignment of the STED Doughnut Using Fluorescence Correlation Spectroscopy
Authors: Tressler, Charmaine
Advisor: Fradin, Cecile
Dalnoki-Veress, Kari
Preston, John
Department: Physics and Astronomy
Keywords: Confocal Microscopy;FCS;STED;Imaging;Diffusion;Fluorescence;Biophysics;Biophysics
Publication Date: Apr-2013
Abstract: <p>This report primarily focuses on effectively obtaining a Stimulated Emission Depletion fluorescence (STED) microscope, while using Fluorescence Correlation Spectroscopy (FCS) as a guide for the alignment of the system. STED is a super-resolution microscopy technique that has gained favour in the biological sciences due to its ability to successfully resolve sub-diffraction structures within live cells. Moreover the ease with which it can be combined with FCS has extended the applications of this technique to the study of the dynamics within a system as well. The central premise of this work focuses around building a STED-FCS system and developing an alignment tool for obtaining a symmetric STED doughnut. Since the point spread functions (PSF) seen in confocal microscopy can be generally approximated by a Gaussian function, we approximate the doughnut PSF with a difference of Gaussian functions. We calculated an autocorrelation function (ACF) corresponding to the simplified Gaussian form of the doughnut PSF and we found that this ACF contained three very similar diffusion times, all inversely proportional to the dye diffusion coefficient. In agreement with the fact that the doughnut PSF is spread out compared to the purely Gaussian PSF, the doughnut ACF amplitude is lower and its average diffusion time large. Lastly we calculated the quality factor, which is the product of the amplitude of the correlation function with the average intensity, Q=G(0)*I, for the purposes of alignment of the system. When translating the confocal pinhole along an axis of the doughnut we were able to identify the centre of the doughnut due to the presence of a minimum in Q which can be very handy for alignment of the doughnut with respect to the pinhole. This operation is essential when aligning the excitation and STED beam. For future work, a road map for alignment of the two beams in the focal plane is also presented utilizing the cross correlation function between the two beams.</p>
URI: http://hdl.handle.net/11375/12856
Identifier: opendissertations/7707
8756
3623929
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.69 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue