Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12797
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHawke, Thomasen_US
dc.contributor.authorNissar, Aliyah A.en_US
dc.date.accessioned2014-06-18T17:00:46Z-
dc.date.available2014-06-18T17:00:46Z-
dc.date.created2012-12-30en_US
dc.date.issued2013-04en_US
dc.identifier.otheropendissertations/7653en_US
dc.identifier.other8718en_US
dc.identifier.other3558507en_US
dc.identifier.urihttp://hdl.handle.net/11375/12797-
dc.description.abstract<p>Adult skeletal muscle has the remarkable capacity of regenerating in response to stressors, such as overuse, injury, or myopathic conditions. A fundamental contributor to the regenerative process is satellite cells, which are the primary stem cells of skeletal muscle. Uncovering factors involved in satellite cell function will greatly improve their therapeutic potential, especially for patients suffering from myopathic diseases.</p> <p>The protein Xin was previously identified as being highly upregulated in damaged skeletal muscle and localized to the satellite cell population, however its purpose there has not been elucidated. Therefore the overall goal of this study was to determine the role of Xin during skeletal muscle regeneration and within its resident stem cell population. This was approached using Xin knockdown (Xin shRNA) and knockout (Xin-/- mice) models, whereby any deficits or changes in the regenerative process can be attributed to the lack/absence of Xin. The results of the following studies reveal that when Xin expression is reduced or absent, muscle regeneration is impaired, satellite cell activation is altered, and muscle fiber morphology moves towards a myopathic state.</p> <p>Furthermore, since Xin has been shown to be upregulated during regeneration, it was interesting to study the expression of Xin in human myopathic muscle which is in a constant state of regeneration. It was observed that Xin expression correlates with degree of damage in myopathic muscle, regardless of disease diagnosis. Therefore, these data have improved our understanding of muscle regeneration, satellite cell function, and suggest a clinical marker for defining muscle damage severity.</p>en_US
dc.subjectskeletal muscle regenerationen_US
dc.subjectsatellite cellen_US
dc.subjectXinen_US
dc.subjectmuscular dystrophyen_US
dc.titleThe role of Xin in skeletal muscle regenerationen_US
dc.typethesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.63 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue