Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12706
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBandler, John W.en_US
dc.contributor.authorAbdel-Malek, Lamei Hanyen_US
dc.date.accessioned2014-06-18T17:00:29Z-
dc.date.available2014-06-18T17:00:29Z-
dc.date.created2009-10-29en_US
dc.date.issued1977-09en_US
dc.identifier.otheropendissertations/757en_US
dc.identifier.other1842en_US
dc.identifier.other1051038en_US
dc.identifier.urihttp://hdl.handle.net/11375/12706-
dc.description.abstract<p>This thesis addresses itself to what is considered to be one of the most general theoretical problems associated with the art of engineering design. A unified treatment is presented of production yield evaluation, worst-case design and yield optimization. The formulation is suited to nonlinear programming methods of solution.</p> <p>Viewed in its entirety the approach integrates the following concepts: design centering, assignment of component tolerances, post-production tuning, yield estimation for realistic distributions and modeling of response functions. Many of the ideas can also be used separately depending on the type of design evaluation required, the number of degrees of freedom involved and the availability and properties of suitable simulation programs.</p> <p>The thesis presents an analytical approach to yield and yield sensitivity evaluation. Basic to the approach is the discretization of the distributions by use of orthotopic cells to which suitable uniform distributions are applied. Multidimensional polynomials provide approximations to actual functions, which may be expensive to compute. Algorithms for updating and evaluating these polynomials are developed to permit efficient use of gradient optimization methods.</p> <p>Industrially oriented design examples are furnished to justify the theory. A telephone channel (lossy) bandpass filter is considered with relative insertion loss specifications to illustrate the analysis of yield. The cascade connection of nonideal, inhomogeneous sections of rectangular waveguides is considered from the worst-case design point of view. A current switch emitter follower involving transistors, a diode and a transmission line provides a challenging example for yield optimization including parameter correlations.</p>en_US
dc.subjectElectrical and Electronicsen_US
dc.subjectElectrical and Electronicsen_US
dc.titleA Unified Treatment of Yield Analysis, Worst-Case Design and Yield Optimizationen_US
dc.typethesisen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.99 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue