Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12690
Title: A BRAIN MODEL FOR THE STUDY OF MR SUSCEPTIBILITY INDUCED PHASE BEHAVIOR
Authors: Buch, Sagar
Advisor: Haacke, Mark E.
Noseworthy, Michael
Department: Biomedical Engineering
Keywords: Brain Model;Phase MRI;Susceptibility Weighted Imaging;susceptibility mapping;T2* mapping.;Bioimaging and biomedical optics;Bioimaging and biomedical optics
Publication Date: Oct-2012
Abstract: <p>MR phase images contain essential information about local magnetic susceptibility sources in the brain, creating a new type of contrast in magnetic resonance imaging (MRI). The goal of this thesis is to demonstrate with a model of the brain how accurately the transformation of phase to susceptibility takes place.</p> <p>A 3D brain model uses the Forward process to calculate magnetic field perturbations caused by susceptibility properties of the tissues in the model. Homodyne High Pass (HP) filter and SHARP algorithm are used to process the simulated phase images. Similarly, MR magnitude data are simulated using tissue properties such as T<sub>1</sub>, T<sub>2</sub><sup>*</sup> relaxation times and spin density.</p> <p>The halo ring around red nucleus in the real phase data is believed to be an indicator of a capsule around red nucleus. Similar effect is seen in the simulated phase images without including the capsule of red nucleus in the model, this comparison explains that the halo effect may just be entirely or a part of the phase behavior around red nucleus. A negative susceptibility in the internal capsule region, seen in both simulated and real susceptibility maps, is discussed as a possible artifact caused by the processing techniques after comparing the simulated susceptibility maps produced from unprocessed and processed phase data. The brain model is used to determine the optimum echo time of the initial gradient echo sequence in order to produce a high quality susceptibility map with reasonably low error and better time efficiency.</p>
URI: http://hdl.handle.net/11375/12690
Identifier: opendissertations/7554
8603
3379546
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.3 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue