Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12656
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWallace, John L.en_US
dc.contributor.advisorHuizinga, Janen_US
dc.contributor.advisorBercik, Premeken_US
dc.contributor.authorFlannigan, Kyle L.en_US
dc.date.accessioned2014-06-18T17:00:18Z-
dc.date.available2014-06-18T17:00:18Z-
dc.date.created2012-09-27en_US
dc.date.issued2012-10en_US
dc.identifier.otheropendissertations/7523en_US
dc.identifier.other8584en_US
dc.identifier.other3352895en_US
dc.identifier.urihttp://hdl.handle.net/11375/12656-
dc.description.abstract<p>Hydrogen sulfide (H<sub>2</sub>S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H<sub>2</sub>S synthesis increases markedly during injury and inflammation and contributes to resolution. Some of the bacteria residing in the colon also produce H<sub>2</sub>S. The extent to which bacterial H<sub>2</sub>S synthesis contributes to what is measured as colonic H<sub>2</sub>S synthesis is not clear. When comparing conventional and germ-free mice we found no differences in colonic H<sub>2</sub>S synthesis. Furthermore, we found that colonic H<sub>2</sub>S synthesis is markedly increased when colonic tissue is inflamed, and, in proportion to the extent of inflammation, however fecal H<sub>2</sub>S synthesis does not change. Finally, rats fed a B vitamin-deficient diet for 6 weeks exhibited significantly diminished colonic H<sub>2</sub>S synthesis, but fecal H<sub>2</sub>S synthesis was not different from that of rats on the control diet. Our results demonstrate that H<sub>2</sub>S production by colonic bacteria does not contribute significantly to what we measure as colonic tissue H<sub>2</sub>S production.</p> <p>In another study, the contributions of three enzymatic pathways to colonic H<sub>2</sub>S synthesis were determined in tissues taken from healthy rats and rats with colitis.<strong> </strong>The ability of colonic tissue to inactivate H<sub>2</sub>S was also determined. The majority of increased H<sub>2</sub>S synthesis, in both healthy and inflamed tissue, was derived via a pyroxidal-5’-phosphate-independent pathway. Ulcerated mucosal tissue accounted for the greatest levels of H<sub>2</sub>S synthesis, and the extent of granulocyte infiltration into the tissue did not appear to be a significant determinant of the levels of H<sub>2</sub>S production. Inactivation of H<sub>2</sub>S by colonic tissue occurred rapidly, but was significantly reduced in ulcerated colonic tissue from rats with colitis. Damage to colonic tissue appears to be the major stimulus for enhanced H<sub>2</sub>S synthesis. Together, the increased production and decreased inactivation of H<sub>2</sub>S may contribute to promoting resolution of inflammation and repair of damaged colonic tissue.</p>en_US
dc.subjectInflammationen_US
dc.subjectMucosal Defenseen_US
dc.subjectUlceren_US
dc.subjectRepairen_US
dc.subjectBacteriaen_US
dc.subjectMicrobiotaen_US
dc.subjectGastroenterologyen_US
dc.subjectGastroenterologyen_US
dc.titleEukaryotic and Prokaryotic Sources of Colonic Hydrogen Sulfide Synthesisen_US
dc.typethesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.99 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue