Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12632
Title: MOLECULAR DYNAMICS SIMULATION STUDY OF SOLID-LIQUID INTERFACE PROPERTIES OF HCP MAGNESIUM
Authors: Bai, Yunfei
Advisor: Hoyt, Jeffrey J.
Department: Materials Science and Engineering
Keywords: MD simulations;solid-liquid interface;interfacial free energy;interfacial structure;HCP Magnesium;Materials Science and Engineering;Materials Science and Engineering
Publication Date: Oct-2012
Abstract: <p>The structural and thermodynamic properties of a crystal-melt interface in</p> <p>elemental magnesium have been investigated using molecular dynamics (MD)</p> <p>simulations with an embedded atom method description of the interatomic potential.</p> <p>Three low index interfacial orientations, (0001), (1101) and (1120), have been studied.</p> <p>From fine-grained atomic density profiles, the structural interfacial widths show obvious anisotropy and the variation of interatomic planar spacing as a function of distance through the crystal-melt boundary is established. Mainly from the coarse-grained density profiles, the effective 10-90 width of the interface region, defined as the intrinsic width, in each orientation has been determined. In addition, the interfacial stresses are obtained from an integration of the interfacial stress profiles and the results show significant anisotropy, which is possibly related to the anisotropy of occupation fraction profiles. Finally, from a determination of the excess energy and interfacial stress of the solid-liquid interface and from previous published results for the interfacial free energy at the melting point, the Gibbs-Cahn integration is employed to derive an estimation of the temperature dependence of the interfacial free energy at non-equilibrium temperatures. All of the crystal-melt interfacial properties for magnesium are compared with simulation data from other elemental metals and alloys, as well as from other model systems such as Lennard- Jones and hard spheres.</p>
URI: http://hdl.handle.net/11375/12632
Identifier: opendissertations/7500
8560
3351336
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.89 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue