Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12604
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSelvaganapathy, P. R.en_US
dc.contributor.authorDang, Boen_US
dc.date.accessioned2014-06-18T17:00:09Z-
dc.date.available2014-06-18T17:00:09Z-
dc.date.created2012-09-25en_US
dc.date.issued2012-10en_US
dc.identifier.otheropendissertations/7476en_US
dc.identifier.other8531en_US
dc.identifier.other3349255en_US
dc.identifier.urihttp://hdl.handle.net/11375/12604-
dc.description.abstract<p>Continuous monitoring of pathogens that may be present in water is one of the key preventive measures that can be used in rural areas of developed countries and developing countries to reduce chances of the water borne diseases outbreak. Off-site testing of microbiological contamination of water is conventionally done for monitoring water quality. However, such a process is time consuming and involves using a variety of hazardous reagents. To address these issues, a portable device for rapid detection of unsafe water is needed.</p> <p>One of the key components in this system is to extract DNA from the pathogens. The primary consideration for DNA extraction is to separate DNA from proteins and other cell debris in the lysate solution. The pure population of DNA molecules are then sent downstream for subsequent processing such as real-time PCR (Polymerase Chain Reaction) and BioFET sensors for further identification and analysis.</p> <p>The focus of the thesis will be on the fabrication of a microfluidic DNA extraction system that can achieve high DNA extraction efficiency and a good repeatability. It can also be easily automated, and integrated with other components of the DNA analysis system. The high surface-to-volume macro/mesoporous silica DNA binding column was synthesized using sol-gel silica technology and triblock copolymer F127 was added to form a crack-free mesoporous silica network. Furthermore, a monodispersed polystyrene microspheres soft-template was assembled using a simple but novel technique that employs controlled suction to enhance self-assembly into a periodically patterned structure in the extraction chamber/chambers. In combination of heat annealing treatment of this assembled polystyrene template, one can easily control the size of the macropores in the final macro/mesoporous silica structure to allow a lower pressure resistance for DNA sample flow at elution stage. The final macro/mesoporous silica structure synthesized using heat annealing temperature of 115<sup>o</sup>C for 10 minutes was determined to have a porosity of 83.6%. Mesopores of this silica monolith was determined by BET test to be 3.65 nm and the macroporous ranging from 0.5μm to 0.86μm were observed. In addition, the fabrication of porous silica monolith can be easily integrated with the microfluidic system for achieving DNA extraction purposes</p>en_US
dc.subjectDNA extractionen_US
dc.subjectDNA purificationen_US
dc.subjectwater monitoringen_US
dc.subjectmicrofluidicen_US
dc.subjectpolystyrene self-assemblyen_US
dc.subjectmacro/meso porous silica monolith structureen_US
dc.subjectBiochemistry, Biophysics, and Structural Biologyen_US
dc.subjectBiomedical Engineering and Bioengineeringen_US
dc.subjectBiotechnologyen_US
dc.subjectCell and Developmental Biologyen_US
dc.subjectChemical Engineeringen_US
dc.subjectMaterials Science and Engineeringen_US
dc.subjectMechanical Engineeringen_US
dc.subjectMicrobiologyen_US
dc.subjectNanoscience and Nanotechnologyen_US
dc.subjectPublic Healthen_US
dc.subjectBiochemistry, Biophysics, and Structural Biologyen_US
dc.titleDesign & Fabrication of Microfluidic DNA Extraction Device for Water Quality Monitoringen_US
dc.typethesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.55 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue