Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12577
Title: MOLECULAR RESPONSES OF LUNG CANCER TO IONIZING RADIATION: INVESTIGATION OF THE BIGUANIDE METFORMIN IN COMBINATION WITH IONIZING RADIATION
Authors: Storozhuk, Yaryna
Advisor: Tsakiridis, Theodoros
Singh, Gurmit
Hirte, Hal
Department: Medical Sciences
Keywords: AMPK;cancer;ionizing radiation;radiosensitizer;metformin;lung cancer;Medical Molecular Biology;Medical Molecular Biology
Publication Date: Oct-2012
Abstract: <p><strong><em>Purpose</em></strong></p> <p>To examine the potential of the anti-diabetic agent Metformin (MET) to enhance responses of NSCLC to ionizing radiation (IR).</p> <p><strong><em>Experimental Design</em></strong></p> <p>Human NSCLC A549, H1299 and SK-MES cells were treated with IR, MET or the mTOR inhibitor rapamycin and subjected to proliferation, clonogenic, immunoblotting, cell cycle and apoptosis assays. A549 and H1299 cells were grafted into flanks of immunosuppressed mice and treated with MET and/or IR. Tumours were analyzed by immunoblotting and immunohistochemistry.</p> <p><strong><em>Results</em></strong></p> <p>MET(2.5uM-5mM) caused dose-dependent inhibition of proliferation (10-70%)in all lines, inibited clonogenic survival and sensitized cells to IR. In A549 cellsMET caused inhibition of proliferation comparable to rapamycin, stimulated expression and activation of the ATM and AMPK-p53-p21<sup>cip1</sup>and inhibited the Akt-mTOR-4-EBP1 pathway.MET caused G1 arrest of cell cycle, enhanced apoptosis and induced sustained DNA repair foci of gH2AX. MET and IR alone inhibited xenograft growth and combined treatment enhanced that further. IR and MET induced sustained enhancement of expression and activity of ATM-AMPK-p53-p21<sup>cip1</sup>and inhibitionof Akt-mTOR-4-EBP1 pathways in tumours also. MET reduced expression of angiogenesis and enhanced expression of apoptosis markers in both control and radiated tumours.</p> <p><strong><em>Conclusions</em></strong></p> <p>Clinically achievable(uM) doses ofMET inhibit human NSCLC cell and tumour growth and sensitize them to IR.This is accompanied by desirable modulation of molecular signals, inhibition of angiogenesis and induction of apoptosis. Our results suggest that MET could be a clinically useful adjunct to radiotherapy in NSCLC and support clinical investigation of MET in combination with radiotherapy.</p>
URI: http://hdl.handle.net/11375/12577
Identifier: opendissertations/7451
8509
3347628
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.19 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue