Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12516
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSwartz, Christopher L.E.en_US
dc.contributor.authorMastragostino, Richarden_US
dc.date.accessioned2014-06-18T16:59:54Z-
dc.date.available2014-06-18T16:59:54Z-
dc.date.created2012-09-19en_US
dc.date.issued2012-10en_US
dc.identifier.otheropendissertations/7397en_US
dc.identifier.other8442en_US
dc.identifier.other3335135en_US
dc.identifier.urihttp://hdl.handle.net/11375/12516-
dc.description.abstract<p>Process operability represents the ability of a process plant to operate satisfactorily away from the nominal operating or design condition, where flexibility and dynamic operability are two important attributes of operability considered in this thesis. Today's companies are facing numerous challenges, many as a result of volatile market conditions. Key to sustainable profitable operation is a robust process supply chain. Within a wider business context, flexibility and responsiveness, i.e. dynamic operability, are regarded as key qualifications of a robust process supply chain.</p> <p>The first part of this thesis develops methodologies to rigorously evaluate the dynamic operability and flexibility of a process supply chain. A model is developed which describes the response dynamics of a multi-product, multi-echelon supply chain system. Its incorporation within a dynamic operability analysis framework is shown, where a bi-criterion, two-stage stochastic programming approach is applied for the treatment of demand uncertainty, and for estimating the Pareto frontier between an economic and responsiveness criterion. Two case studies are presented to demonstrate the effect of supply chain design features on responsiveness. This thesis has also extended current paradigms for process flexibility analysis to supply chains. The flexibility analysis framework, where a steady-state supply chain model is considered, evaluates the ability to sustain feasible steady-state operation for a range of demand uncertainty.</p> <p>The second part of this thesis develops a decision-support tool for supply chain management (SCM), by means of a robust model predictive control (MPC) strategy. An effective decision-support tool can fully leverage the qualifications from the operability analysis. The MPC formulation proposed in this thesis: (i) captures uncertainty in model parameters and demand by stochastic programming, (ii) accommodates hybrid process systems with decisions governed by logical conditions/rulesets, (iii) addresses multiple supply chain performance metrics including customer service and economics, and (iv) considers both open-loop and closed-loop prediction of uncertainty propagation. The developed robust framework is applied for the control of a multi-echelon, multi-product supply chain, and provides a substantial reduction in the occurrence of back orders when compared with a nominal MPC framework.</p>en_US
dc.subjectSupply Chain Optimizationen_US
dc.subjectOperability Analysisen_US
dc.subjectRobust Model Predictive Controlen_US
dc.subjectStochastic Optimizationen_US
dc.subjectMulti-objective (Pareto) Optimizationen_US
dc.subjectProcess Control and Systemsen_US
dc.subjectProcess Control and Systemsen_US
dc.titleOptimization-based Formulations for Operability Analysis and Control of Process Supply Chainsen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.38 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue