Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12408
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPhillips, Stuarten_US
dc.contributor.authorDi, Donato M Danielleen_US
dc.date.accessioned2014-06-18T16:59:29Z-
dc.date.available2014-06-18T16:59:29Z-
dc.date.created2012-08-31en_US
dc.date.issued2012-10en_US
dc.identifier.otheropendissertations/7299en_US
dc.identifier.other8360en_US
dc.identifier.other3281410en_US
dc.identifier.urihttp://hdl.handle.net/11375/12408-
dc.description.abstract<p>Aerobic exercise can stimulate mixed muscle protein synthesis (MPS) acutely post-exercise; however, the types of proteins synthesized as a result of aerobic exercise are not known by studying changes in mixed MPS. We aimed to study the effect of aerobic exercise intensity on the 4 and 24 h post-exercise fractional synthesis rate (FSR) of myofibrillar proteins. Using a within-subject design, eight males (21 ± 1 years, VO<sub>2 peak</sub>: 46.7 ± 2.0 mL kg<sup>-1</sup> min<sup>-1</sup>) underwent 2 trials with a primed constant infusion of L-[<em>ring</em>-<sup>13</sup>C<sub>6</sub>]phenylalanine in the fasted state for each work-matched exercise intensity (LOW: cycling for 60 min at 30% W<sub>max</sub> and HIGH: 30 min at 60% W<sub>max</sub>). Muscle biopsies were obtained to determine resting, 4 and 24 h post-exercise myofibrillar FSR. We also studied the phosphorylation of signaling proteins involved in protein synthesis at each time point using immunoblotting methods. Phospho-p38<sup>Thr180/Tyr182</sup> was greater at 4.5 h after exercise compared to 0.5, 24 and 28 h post-exercise (<em>p</em> < 0.05). Additionally, a strong trend was present for phospho-mTOR<sup>Ser2448</sup> (<em>p</em> = 0.056) with 0.5 h post-exercise phosphorylation significantly higher after HIGH than after LOW exercise (<em>p </em>< 0.05). Myofibrillar protein synthesis was stimulated 1.5–fold 0.5 – 4 h post-exercise (<em>p</em> < 0.05), returning to rest in the LOW condition 24 h post-exercise, while 6 out of 8 subjects maintained increased myofibrillar FSR 24 h post HIGH exercise (<em>p</em> < 0.05). The increase in myofibrillar FSR 0.5 – 4 h post-exercise was correlated with phospho-mTOR<sup>Ser2448</sup> 0.5 h post-exercise (r = 0.698, <em>p</em> < 0.01), indicating the role of this signaling pathway in myofibrillar protein synthesis. It is concluded that aerobic exercise has an effect on myofibrillar protein synthesis and intensity may play a role in the duration of this response.</p>en_US
dc.subjectaerobic exerciseen_US
dc.subjectmyofibrillar protein synthesisen_US
dc.subjectprotein synthesisen_US
dc.subjectmTORen_US
dc.subjectExercise Scienceen_US
dc.subjectExercise Scienceen_US
dc.titleAerobic Exercise Intensity Affects Skeletal Muscle Myofibrillar Protein Synthesis and Anabolic Signaling in Young Menen_US
dc.typethesisen_US
dc.contributor.departmentKinesiologyen_US
dc.description.degreeMaster of Science in Kinesiologyen_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.88 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue