Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12397
Title: Spatial Clutter Intensity Estimation for Multitarget Tracking
Authors: CHEN, XIN
Advisor: Kirubarajan, Thiagalingam
Department: Electrical and Computer Engineering
Keywords: multitarget tracking;clutter estimation;spatial intensity;point process;Controls and Control Theory;Signal Processing;Controls and Control Theory
Publication Date: Oct-2012
Abstract: <p>In this thesis, the problem of estimating the clutter spatial intensity function for the multitarget tracking algorithms has been considered. In many scenarios, after the signal detection process, measurement points provided by the sensor (e.g., sonar, infrared sensor, radar) are not distributed uniformly in the surveillance region as assumed by most tracking algorithms. On the other hand, in order to obtain accurate results, the multitarget tracking algorithm requires information about clutter’s spatial intensity. Thus, non-homogeneous clutter spatial intensity has to be estimated from the measurement set and the tracking filter’s output. Also, in order to take advantage of existing tracking algorithms, it is desirable for the clutter estimation method to be integrated into the tracker itself. In this thesis, the clutter is modeled by a non-homogeneous Poisson point (NHPP) process with a spatial intensity function g(z). To calculate the value of the clutter spatial intensity, all we need to do is estimating g(z). First, two new methods for joint spatial clutter intensity estimation and multitarget tracking using the Probability Hypothesis Density (PHD) Filter are presented. Then, based on NHPP process, multitarget multi-Bernoulli processes and set calculus, the approximated Bayesian method is extended to joint the non–homogeneous clutter background estimation and multitarget tracking with standard multitarget tracking algorithms, like the Multiple Hypothesis Tracking (MHT) and the Joint Integrated Probabilistic Data Association (JIPDA) tracker. Finally, a kernel density method is proposed for the clutter spatial intensity estimation problem. Simulation results illustrate the performance of the above algorithms, both in terms of the false track number and the true track initialization speed. All proposed algorithms show the ability to improve the performance of the multitarget tracker in the presence of slowly time varying non–homogeneous clutter background.</p>
URI: http://hdl.handle.net/11375/12397
Identifier: opendissertations/7289
8343
3271195
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
There are no files associated with this item.
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue