Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12351
Title: ELECTROPHORETIC DEPOSITION OF ORGANIC - INORGANIC NANOCOMPOSITES
Authors: Sun, Yanchao
Advisor: Zhitomirsky, Igor
Department: Materials Science and Engineering
Keywords: Titanium dioxide;Polymers;Electrophoretic deposition;Dyes;Adsorption;Film;Ceramic Materials;Polymer and Organic Materials;Ceramic Materials
Publication Date: Oct-2012
Abstract: <p>Electrochemical deposition methods have been developed for the fabrication of organic - inorganic nanocomposite coatings. The methods are based on electrophoretic deposition of ceramic nanoparticles and polymers.</p> <p>EPD method has been developed for the deposition of nanostructured TiO<sub>2</sub> films using new dispersing agents. The stabilization and charging of the nanoparticles in suspensions was achieved using these organic molecules, which belong to catecholate and salicylate families. Anodic deposition was achieved using caffeic acid, 2,3-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 5-sulfosalicylic acid. Cathodic deposition was performed using 2,4 dihydroxycinnamic acid, p-coumaric acid and trans cinnamic acid. The deposition yield has been studied as a function of the additive concentration and deposition time. The deposition mechanism has been investigated. The fundamental adsorption mechanism is based on the complexation of metal ions at the surfaces of oxide nanoparticles. The method enabled the co-deposition of TiO<sub>2</sub> and other oxides and the formation of composite films.</p> <p>Electrophoretic deposition method has been used for the deposition of TiO<sub>2</sub> nanoparticles modified with organic dyes. Alizarin red, alizarin yellow, pyrocatechol violet and Aurintricarboxylic acid dyes were used for the dispersion and charging of TiO<sub>2</sub>. The microstructures of the nanocomposite coatings were studied. The deposition yield was investigated under a variety of conditions. Obtained results could pave the way for the fabrication of dye-sensitized TiO<sub>2</sub> films.</p> <p>EPD method has also been developed for the fabrication of (Poly[3-(3-N,N-diethylaminopropoxy)thiophene]) PDAOT-TiO<sub>2</sub>, (polyethylenimine) PEI-TiO<sub>2</sub> and PEI-hydrotalcite composite films. The microstructures of the nanocomposite coatings were studied by Scanning Electron Microscopy, Thermogravimetric Analysis, which showed the co-deposition of inorganic nanoparticles and organic polymer. Electrochemical test of the composite film has been conducted. The results showed that PEI film provided corrosion protection of the stainless steel substrates.</p>
URI: http://hdl.handle.net/11375/12351
Identifier: opendissertations/7246
8297
3213358
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.86 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue