Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12321
Title: Development of biomarkers for evaluating phosphate stress in Thellungiella salsuginea
Authors: Mansbridge, John F. P.
Advisor: Weretilnyk, Elizabeth A.
Cameron, Robin
Jacobs, Roger J.
Department: Biology
Keywords: Thellungiella;Phosphate;Arabidopsis;Biomarkers;Yukon;Shandong;Plant Biology;Plant Biology
Publication Date: Oct-2012
Abstract: <p>Phosphorus is a macronutrient required for plant growth and reproduction. Insufficient supplies of phosphate will adversely impact plant growth. In an effort to supply adequate phosphate to crops, large quantities of phosphate-rich fertilizer are applied to fields but much of the phosphate can leach from the soil as run-off, impacting water systems. Therefore, proper management of phosphate and the development of phosphate efficient genotypes of plants are strategies needed for a sustainable agriculture industry.</p> <p>This thesis project focused on the development of biomarkers of phosphate stress in <em>Thellungiella salsuginea, </em>a plant highly tolerant to salt, cold and water deficit. Biomass determinations and real-time quantitative PCR were used to determine the gene expression of several genes selected as known phosphate-responsive genes from studies of phosphate starvation of the related genetic model plant <em>Arabidopsis thaliana.</em></p> <p><em> Thellungiella </em>seedlings were grown on 5 and 500 µM phosphate media. The expression of several genes (<em>RNS1, At4, Pht1;1, Pht1;4, Pht1;5, Siz1, PHR1, WRKY75, </em>and<em> Pht2;1</em>) were assayed for their response to media phosphate content. <em>RNS1</em> and <em>At4 </em>expression was estimated from cDNA prepared from shoot tissues while <em>At4, Pht1;1</em> and <em>Pht1;5</em> expression was determined from root tissues. In all tissue sources, significantly increased expression of <em>RNS1</em>, <em>At4</em>,<em> Pht1;1</em> and <em>Pht1;5</em> was observed under 5 µM phosphate exposure.</p> <p><em> </em>Two natural accessions of <em>Thellungiella</em> were used in this study with one originating from the Yukon Territory, Canada and the second from Shandong Province, China. Seedlings of both ecotypes were grown on defined media plates containing various concentrations of phosphate (0, 25, 125, 250, 500, and 2000 µM). For both accessions, the addition of as little as 25 µM phosphate led to significant increases in root and shoot biomass. Gene expression levels corresponding to <em>RNS1, At4</em> and <em>Pht1;1</em> were the highest in Yukon and Shandong <em>Thellungiella </em>grown on 0 µM phosphate media. The addition of 25 µM phosphate to the media was enough to significantly decrease transcript abundance of <em>RNS1, At4 </em>and <em>Pht1;1. </em>In a test using the transfer of Yukon <em>Thellungiella </em>seedlings from high (500 µM) to low (5 µM) phosphate the expression of <em>At4</em> in roots and shoots increased 30-fold over a five-day period and only <em>Pht1;1</em> expression increased in the roots over the same time period.</p> <p><em>RNS1</em> and <em>At4</em> share attributes that make them suitable biomarkers for phosphate stress in plants. Both genes are expressed in the shoots making it easier to remove tissue for monitoring gene expression, and both genes show readily discernible increases in transcript levels for determination by qPCR. At present, however, the role for their products in phosphate assimilation by plants is uncertain. This lack of knowledge is a deterrent to adopting these genes for widespread use as biomarkers. In particular, more work needs to be done to characterize factors that elicit their expression to test the specificity of their response to phosphate stress in <em>Thellungiella</em>.</p>
URI: http://hdl.handle.net/11375/12321
Identifier: opendissertations/7219
8216
3071013
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.04 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue