Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12218
Title: Behaviour Characteristics of Concrete Masonry
Authors: Hamid, Ahmad Abdel Ahmad
Advisor: Drysdale, R.G.
Heidebrecht, A.C.
Department: Civil Engineering
Keywords: Civil Engineering;Civil Engineering
Publication Date: Sep-1978
Abstract: <p>The lack of understanding the behaviour of concrete masonry and the complex interaction existing between its components (block, mortar, and grout) at failure may be the cause of the continued use of the code's working stress method. This approach could underestimate the potentials of masonry as a construction material. It is the main objective of this investigation to provide a better understanding of concrete masonry behaviour under different in-plane load conditions (compression, tension, shear and biaxial stresses) considering the anisotropic nature of masonry as a composite material. This understanding was gained through a combined experimental and analytical investigation.</p> <p>In the experimental study, 323 masonry assemblages were tested under compression normal and parallel to the bed joints, splitting tension at different orientations from the bed joints, shear along the bed joint with different levels of precompression, and off-axis compression and tension to produce biaxial states of stresses along the bed and head joints. The test material variables were mortar type, grout strength, and bed joint reinforcement.</p> <p>Analytical strength formulas, based on a "strength" approach, are proposed to express, in quantitative terms, the assemblage compressive strength normal to the bed joints, tensile strength normal, diagonal, and parallel to the bed joints, and shear strength along the bed joint with and without precompression. The applicability of the failure theories for both isotropic and composite materials to masonry were examined. Failure criteria are proposed to predict the strength and the failure mode of concrete masonry under biaxial stresses taking into account the anisotropic nature of masonry as a brittle composite material. Design code provisions (CSA S 304) for plain masonry are reviewed.</p>
URI: http://hdl.handle.net/11375/12218
Identifier: opendissertations/712
1887
1062899
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
12.54 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue