Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11983
Title: Assessing change in fish habitat and communities in coastal wetlands of Georgian Bay
Authors: Midwood, Jonathan D.
Advisor: Chow-Fraser, Patricia
Stone, Jonathon
Dushoff, Jonathan
Department: Biology
Keywords: Coastal Wetlands;Northern Pike;Remote Sensing;Inventory;Mapping;Water Levels;Terrestrial and Aquatic Ecology;Terrestrial and Aquatic Ecology
Publication Date: Apr-2012
Abstract: <p>Aquatic vegetation in the pristine coastal marshes of eastern Georgian Bay (GB) provides critical spawning and foraging habitat for fish species, with complex habitat supporting the greatest diversity. These wetlands are threatened by a changing water level regime and forecasted lower water levels. To monitor and conserve these wetlands, we must understand how they function and respond to this stressor. The overall goals of this thesis are to determine the impact of declining water levels on both wetland fish habitat and the fish community as well as identify the spatial scale of habitat utilization by fishes.</p> <p>We first delineate all coastal wetlands in eastern GB, identifying 3771 wetlands that provide habitat for Great Lakes fishes. Using satellite imagery, we develop an object-based classification method to classify four types of wetland vegetation. Since submerged aquatic vegetation (SAV) is not visible from satellite imagery in GB, we develop a model to predict potential area of this important habitat. The model suggests that the response of SAV to declining water levels depends on wetland geomorphology, but generally, the area of SAV decreases. To assess the response of fish habitat coverage and structure to sustained low-water levels, we classify vegetation in images collected in 2002 and 2008. The result is increasingly homogeneous habitat, a net loss of fish habitat and a decrease in fish species richness. Finally, mark-recapture and radio-tracking are used to evaluate fish movement among closely situated wetlands. Results suggest that the current distance used to group and protect small wetlands provincially (750 m), likely protects most resident fish species, but does not cover movement patterns of a top predator. This research will advance our scientific understanding of freshwater coastal ecosystems and aid in the creation of conservation strategies to mitigate future threats from declining water levels.</p>
URI: http://hdl.handle.net/11375/11983
Identifier: opendissertations/6907
7952
2788248
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
46.09 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue