Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11833
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChilds, Aaronen_US
dc.contributor.advisorRoman Viveros, Joseph Beyeneen_US
dc.contributor.authorLiu, Junen_US
dc.date.accessioned2014-06-18T16:57:05Z-
dc.date.available2014-06-18T16:57:05Z-
dc.date.created2011-12-23en_US
dc.date.issued2012-04en_US
dc.identifier.otheropendissertations/6771en_US
dc.identifier.other7713en_US
dc.identifier.other2423996en_US
dc.identifier.urihttp://hdl.handle.net/11375/11833-
dc.description.abstract<p>In this thesis we study several inverse sampling procedures to test for homogeneity in a multivariate hypergeometric distribution. The procedures are finite population analogues of the procedures introduced in Panchapakesan et al. (1998) for the multinomial distribution. In order to develop some exact calculations for critical values not considered in Panchapakesan et al. we introduce some terminologies for target probabilities, transfer probabilities, potential target points, right intersection, and left union. Under the null and the alternative hypotheses, we give theorems to calculate the target and transfer probabilities, we then use these results to develop exact calculations for the critical values and powers of one of the procedures. We also propose a new approximate calculation. In order to speed up some of the calculations, we propose several fast algorithms for multiple summation.</p> <p>N >= 1680000, all the results are the same as those in the multinomial distribution.</p> <p>The computing results showed that the simulations agree closely with the exact results. For small population sizes the critical values and powers of the procedures are different from the corresponding multinomial procedures, but when</p>en_US
dc.subjectInverse Sampling Proceduresen_US
dc.subjectHomogeneityen_US
dc.subjectMultivariate Hypergeometric Distributionen_US
dc.subjectTarget Probabilitiesen_US
dc.subjectTransfer Probabilitiesen_US
dc.subjectPotential Target Pointsen_US
dc.subjectAlternative Hypothesesen_US
dc.subjectNull Hypothesesen_US
dc.subjectCritical Valuesen_US
dc.subjectPowersen_US
dc.subjectApplied Statisticsen_US
dc.subjectMultivariate Analysisen_US
dc.subjectNumerical Analysis and Computationen_US
dc.subjectProbabilityen_US
dc.subjectProgramming Languages and Compilersen_US
dc.subjectStatistical Modelsen_US
dc.subjectTheory and Algorithmsen_US
dc.subjectApplied Statisticsen_US
dc.titleINVERSE SAMPLING PROCEDURES TO TEST FOR HOMOGENEITY IN A MULTIVARIATE HYPERGEOMETRIC DISTRIBUTIONen_US
dc.typethesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
fulltext.pdf
Open Access
469.62 kBAdobe PDFView/Open
jun_liu.jpg
Open Access
1.22 MBJPEGView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue