Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11684
Title: Surface-Plasmon-Polariton-Waveguide Superluminescent Diode: Design, Modeling and Simulation
Authors: Ranjbaran, Mehdi
Advisor: Li, X.
Department: Electrical and Computer Engineering
Keywords: Plasmonics;Superluminescent diode;Optical waveguides;Numerical simulation;Photonic devices;Optical sources;Electromagnetics and photonics;Electromagnetics and photonics
Publication Date: Apr-2012
Abstract: <p>Since the inception of integrated electronic circuits there has been a trend of miniaturizing as many electronic, optical and even mechanical circuits and systems as possible. For optical applications this naturally led to the invention of semiconductor optical sources such as the laser diode (LD) and the light emitting diode (LED). A third device, the superluminescent diode was later invented to offer an output with a power similar to that of an LD and spectral width similar to that of an LED. However, there is usually a trade off between the output power and spectral width of the generated beam. The main challenge in the development of SLD is, therefore, finding ways to mitigate the power-spectral linewidth trade off.</p> <p>Previous work has two major directions. In the first one the goal is to eliminate facet reflections thus preventing lasing from happening. The detrimental effect of lasing is that even before it starts the spectral width quickly narrows down. In the second research direction the goal is to make the material gain spectrum wider by playing with different parameters of quantum well active regions.</p> <p>This research work explores yet another way of broadening output spectrum of SLD while allowing the power to increase at the same time. The surface-plasmon waveguide (SPWG) has been proposed to replace the dielectric waveguide, for the first time. A novel SPWG structure is introduced and designed to optimize the device performance in terms of the output power, spectral width and their product known as the power-linewidth product. The effect of different parameters of the new structure on the output light is investigated and attention is given to the high power, high spectral width and high power-linewidth product regimes.</p>
URI: http://hdl.handle.net/11375/11684
Identifier: opendissertations/6635
7649
2411231
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.11 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue