Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11477
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCampos, Ana R.en_US
dc.contributor.advisorJacobs, Rogeren_US
dc.contributor.advisorGillespie, Dedaen_US
dc.contributor.authorLaw, Fionaen_US
dc.date.accessioned2014-06-18T16:54:48Z-
dc.date.available2014-06-18T16:54:48Z-
dc.date.created2011-09-28en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6440en_US
dc.identifier.other7386en_US
dc.identifier.other2263562en_US
dc.identifier.urihttp://hdl.handle.net/11375/11477-
dc.description.abstract<p>RanBPM is a conserved putative scaffold protein of unknown function. Loss-of-function in <em>RanBPM</em> leads to pleiotropic phenotypes such as reduced locomotion, decreased size and larval lethality in the <em>Drosophila melanogaster</em>.</p> <p><em>dRanBPM</em> mutants have decreased branching and boutons at the neuromuscular junction, which may contribute to their locomotory defect. To investigate if dRanBPM is involved in controlling synaptic architecture at the neuromuscular junction, levels of two cytoskeletal proteins, Futsch and profilin, were assessed in <em>dRanBPM</em> mutants.</p> <p>Due to time constraints, immunoblots for Futsch were not fully optimized for protein measurement. Immunoblots for profilin, on the other hand, were successfully carried out. However, results from the reproduction of a blot demonstrating the negative regulation of <em>Drosophila</em> FMRP on profilin did not agree with that of the literature. In addition, results from an epistatic experiment demonstrated that profilin levels were not affected in FMRP deficient flies when compared to those with additional decrease in dRanBPM function.</p> <p>Targeted expression of <em>dRanBPM</em> to neurosecretory cells is able to rescue size and lethality of <em>dRanBPM</em> mutants, suggesting a common pathway through which both phenotypes operate is disrupted in these mutants. Activation of the insulin signaling pathway was indeed found to be downregulated in <em>dRanBPM</em> mutants. A longevity assay was alternatively carried out to demonstrate decreased insulin pathway activation in <em>dRanBPM</em> mutants. Unfortunately, due to inappropriate controls used for this experiment, no conclusive points can be made. Together, these findings contribute to the knowledge that RanBPM plays and to designing future experiments to test for RanBPM function.</p>en_US
dc.subjectDrosophila melanogasteren_US
dc.subjectRanBPMen_US
dc.subjectNMJen_US
dc.subjectinsulin signaling pathwayen_US
dc.subjectDevelopmental Biologyen_US
dc.subjectDevelopmental Biologyen_US
dc.titleCharacterization of RanBPM in Drosophila melanogasteren_US
dc.typethesisen_US
dc.contributor.departmentNeuroscienceen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.26 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue