Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11356
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGillespie, Dedaen_US
dc.contributor.advisorFoster, Janeen_US
dc.contributor.authorSingh, Enakshien_US
dc.date.accessioned2014-06-18T16:54:24Z-
dc.date.available2014-06-18T16:54:24Z-
dc.date.created2011-09-28en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6329en_US
dc.identifier.other7387en_US
dc.identifier.other2263564en_US
dc.identifier.urihttp://hdl.handle.net/11375/11356-
dc.description.abstract<p>The superior olivary complex (SOC) is comprised of nuclei involved in sound localization. To compute interaural sound level differences, lateral superior olive (LSO) neurons integrate converging glutamatergic inputs from the cochlear nucleus with glycinergic inputs from the medial nucleus of the trapezoid body (MNTB). To compute interaural timing differences, the medial superior olive (MSO) integrates converging glutamatergic inputs from the ipsilateral and contralateral cochlear nucleus. The MSO also receives a major inhibitory input from the MNTB. N-methyl-D-aspartate receptors (NMDARs) are thought to play a role in the developmental refinement of these auditory brainstem pathways. The GluN2A and GluN2B NMDAR subunits confer widely different properties on NMDARs, substantially affecting plasticity. We assessed postnatal developmental messenger RNA (mRNA) expression of GluN1, GluN2A and GluN2B subunits in the LSO, MSO and MNTB using quantitative <em>in-situ</em> hybridization in tissue from 10 litters, ages postnatal day 1 to 36 (P1-36).</p> <p>GluN1 mRNA expression in the LSO, MSO and MNTB decreased with age. In all three nuclei, GluN2B mRNA expression was highest during the first postnatal week, dropping to low levels thereafter. In the LSO, GluN2A levels increased, then decreased to moderate levels. In the MNTB, GluN2A levels decreased from initially high levels. In the MSO, GluN2A levels increased to intermediate levels. The GluN2A/2B ratio increased 2-fold between P1 and P8 in the MNTB, whereas the ratio increased 3-fold between P8 and P15 in the LSO and MSO. The changes in GluN2A:GluN2B ratio are consistent with a developmental switch from GluN2B-containing NMDARs to GluN2A-containing NMDARs. These results are consistent with prior electrophysiological experiments that show NMDAR-mediated currents declining with age in the aVCN-MNTB, aVCN-LSO and MNTB-LSO pathways. The GluN2A subunit exhibited different developmental expression patterns in MNTB, LSO and MNTB, which suggests that GluN2A mRNA expression is locally regulated between nuclei, whereas GluN2B may be globally regulated.</p>en_US
dc.subjectauditory brainstemen_US
dc.subjectNMDA receptoren_US
dc.subjectsuperior olivary complexen_US
dc.subjectDevelopmental Neuroscienceen_US
dc.subjectDevelopmental Neuroscienceen_US
dc.titlePOSTNATAL DEVELOPMENTAL DISTRIBUTION OF NMDA RECEPTOR SUBUNIT MRNA IN AUDITORY BRAINSTEM OF RATen_US
dc.typethesisen_US
dc.contributor.departmentNeuroscienceen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
24.85 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue