Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11355
Title: Some applications of self-affine sets to wavelet theory
Authors: Fu, Xiaoye
Advisor: Gabardo, Jean-Pierre
Stanley Alama and Walter Craig
Stanley Alama and Walter Craig
Department: Mathematics and Statistics
Keywords: self-affine sets;wavelet sets;scaling sets;Harmonic Analysis and Representation;Harmonic Analysis and Representation
Publication Date: Oct-2011
Abstract: <p>In this thesis, we study several applications of self-affine sets to wavelet theory. Five major topics are considered here: wavelet sets (scaling sets), multiwavelet sets (generalized scaling sets), self-affine tiles, integral self-affine multi-tiles, self-affine sets. We divide the thesis into six chapters to discuss these topics. In Chapter 1, the dimension function of a self-affine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$-dilation generalized scaling set $K$ assuming that $K$ is a self-affine tile satisfying $BK=(K+d_1)\bigcup(K+d_2)$, where $B=A^t$ and $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$. We show that it must be a constant in dimension $n=1$ or $2$ and it is bounded by $2\lvert K\rvert$ for any $n$. This result shows that all $A$-dilation self-affine scaling sets must be $A$-dilation MRA scaling sets in dimensions one and two. There exist results on the connection between the theory of wavelets and the theory of integral self-affine tiles and in particular, on the construction of wavelet bases using integral self-affine tiles. However, there are many non-integral self-affine tiles which can also yield wavelet basis. In Chapter 2 and Chapter 3, we give a complete characterization of all two dimensional $A$-dilation scaling sets $K$ such that $K$ is a self-affine tile satisfying $BK=(K+d_1)\bigcup (K+d_2)$ for some $d_1, d_2\in\mathbb{R}^2$, where $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$. In Chapter 2, we deal with a particular case where $0\in\{d_1,d_2\}$, i.e. a self-affine tile $K$ satisfies $BK=K\bigcup (K+d)$ for some $d\in\mathbb{R}^2$. Chapter 3 is devoted to the general case with $d_1, d_2\in\mathbb{R}^2$. Moreover, we give a sufficient condition for a self-affine tile, possibly non-integral, to be an MRA scaling set in Chapter 3. Gabardo and Yu first considered using integral self-affine tiles in the Fourier domain to construct wavelet sets and they produced a class of compact wavelet sets with certain self-similarity properties. In Chapter 4, we generalize their results to the integral self-affine multi-tiles setting. We characterize some analytic properties of integral self-affine multi-tiles under certain conditions. We also consider the problem of constructing (multi)wavelet sets using integral self-affine multi-tiles. Suppose that a measurable $\mathbb{Z}^n$-tiling set $K\subset\mathbb{R}^n$ is an integral self-affine multi-tile associated with an $n\times n$ integral expansive matrix $B$. To our knowledge, no one considered how to represent an integral self-affine $\mathbb{Z}^n$-tiling set as the disjoint union of prototiles. In Chapter 5, we provide an algorithm to decompose $K$ into disjoint pieces $K_j$ which satisfy $K=\displaystyle\bigcup K_j$ such that the collection of the sets $K_j$ is an integral self-affine collection associated with matrix $B$ and the number of pieces $K_j$ is minimal. Using this algorithm, we can determine whether a given measurable $\mathbb{Z}^n$-tiling set $K\subset\mathbb{R}^n$ is an integral self-affine multi-tile associated with any given $n\times n$ integral expansive matrix $B$. Furthermore, the minimal decomposition we provide is unique. Let $B$ be an $n\times n$ real expanding matrix and $\mathcal{D}$ be a finite subset of $\mathbb{R}^n$. The self-affine set $K=K(B,\mathcal{D})$ is the unique compact set satisfying the set equation $BK=\displaystyle\bigcup_{d\in\mathcal{D}}(K+d)$. In Chapter 6, we not only consider the problem how to compute the Lebesgue measure of self-affine sets $K(B,\mathcal{D})$, but also consider the Hausdorff measure for those with zero Lebesgue measure under the assumption that $K(B,\mathcal{D})$ is a self-similar set. In the case where $\text{card}(\mathcal{D})=\lvert\det B\rvert,$ we relate the Lebesgue measure of $K(B,\mathcal{D})$ to the upper Beurling density of the associated measure $\mu=\lim\limits_{s\to\infty}\sum\limits_{\ell_0,\dotsc,\ell_{s-1}\in\mathcal{D}}\delta_{\ell_0+B\ell_1+\dotsb+B^{s-1}\ell_{s-1}}.$ If, on the other hand, $\text{card}(\mathcal{D})<\lvert\det B\rvert$ and $B$ is a similarity matrix, we relate the Hausdorff measure $\mathcal{H}^s(K)$, where $s$ is the similarity dimension of $K$, to a corresponding notion of upper density for the measure $\mu$.</p>
URI: http://hdl.handle.net/11375/11355
Identifier: opendissertations/6328
7384
2263427
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.71 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue