Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11345
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFang, Qiyinen_US
dc.contributor.advisorHayward, Joseph E.en_US
dc.contributor.advisorHaugen, Harold K.en_US
dc.contributor.authorEmigh, Brent J.en_US
dc.date.accessioned2014-06-18T16:54:21Z-
dc.date.available2014-06-18T16:54:21Z-
dc.date.created2011-09-28en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6319en_US
dc.identifier.other7371en_US
dc.identifier.other2262372en_US
dc.identifier.urihttp://hdl.handle.net/11375/11345-
dc.description.abstract<p>Mechanical oscillating drills and saws are used in orthopaedic surgery to cut bone and develop screw-holes; however, their use causes friction resulting in significant thermal damage. Ultrashort pulsed lasers appear well-suited to replace traditional tools as they have the ability to efficiently remove bone tissue while causing only minimal collateral damage. Laser ablation also has the added advantages of: (i) no mechanical vibration; (ii) minimal invasiveness; and (iii) small focus spot size. In this thesis work, we experimentally investigated a few key aspects of ultrashort laser ablation of bone tissue.</p> <p>The ablation threshold of unaltered bone was measured using the <em>D</em><sup>2 </sup>technique and found to range from 1.66 J/cm<sup>2 </sup>± 0.87 J/cm<sup>2</sup> to 2.37 J/cm<sup>2 </sup>± 0.78 J/cm<sup>2</sup> depending on incident pulse number. The reduction in ablation threshold with pulse number was an indication of an incubation effect. Using a power law model, the incubation coefficient, ζ, was measured to be 0.89 ± 0.03.</p> <p>The effect of specific laser parameters and drilling protocols on ablation efficiency was also characterized. For ultrashort pulses (≤10 ps), the removal rate was found to be inversely related to the pulse duration; however, irradiation with 5-10 ps pulses were also shown to result in significant tissue removal. With a pulse repetition rate of 1 kHz, the removal rate was observed to be highest when ablating with 50-100 pulses per spot.</p> <p>Larger volumes (>1 mm<sup>3</sup>) of bone tissue were removed using laser scanning procedures. A series of scanned concentric circles produced a structure ~2.4 mm deep; however, ablated side-lobes were present at oblique angles to the incident beam. A two-layer structure subsequently produced no side-lobes. The ablative precision in trabecular bone was observed to be less than cortical bone. Using mimicked Nd:YAG laser parameters, cylindrical drilling produced craters significantly less deep than those achieved with a typical Ti:Sapphire configuration. The ability to drill large-scale holes using low average pulse energies and optimized scanning procedures will alleviate the stringent requirements for optical components in clinical practice.</p>en_US
dc.subjectLaser ablationen_US
dc.subjectfemtoseconden_US
dc.subjectboneen_US
dc.subjectultrafast material processingen_US
dc.subjectincubationen_US
dc.subjectBioimaging and biomedical opticsen_US
dc.subjectBioimaging and biomedical opticsen_US
dc.titleExperimental Evaluation of Bone Drilling using Ultrashort Pulsed Laser Ablationen_US
dc.typethesisen_US
dc.contributor.departmentMedical Physicsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.09 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue