Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11344
Title: YTTERBIUM-DOPED FIBER AMPLIFIERS: COMPUTER MODELING OF AMPLIFIER SYSTEMS AND A PRELIMINARY ELETRON MICROSCOPY STUDY OF SINGLE YTTERBIUM ATOMS IN DOPED OPTICAL FIBERS
Authors: Liu, Hao
Advisor: Haugen, Harold K.
Department: Engineering Physics
Keywords: Ytterbium;fiber;amplifier;single atom;Computational Engineering;Engineering Physics;Engineering Science and Materials;Optics;Computational Engineering
Publication Date: Oct-2011
Abstract: <p>Ytterbium-doped optical fibers have extensive applications in high-power fiber lasers, optical amplifiers, and amplified spontaneous emission light sources. In this thesis two sub-projects associated with ytterbium doped fibers are discussed.</p> <p>Numerical simulations have been used to model high-repetition rate ultrafast ytterbium-doped fiber amplifier systems assuming continuous-wave input signals under variable situations, such as one-sided and two-sided pumping. Different system configurations are also developed, such as a single-stage amplification system, a two-stage amplification system and a separated amplification system, providing alternative choices for experiments and applications. The simulation results are compared with experimental data and the simulation results from some other software. The influence of nonlinear effects in the fiber is also very briefly discussed in this thesis.</p> <p>In a second research activity, the distribution of ytterbium atoms is being investigated in a range of double-clad ytterbium-doped fibers. Using aberration-corrected electron microscopy, ytterbium atoms are directly observed from the wedge-shaped specimen, which was prepared from ytterbium-doped optical fibers by tripod polishing combined with ion milling. Challenges related to sample preparation and the interpretations of images are discussed, but the approach shows great potential to investigate the doping behaviors down to atomic scale in the fibers. The work is expected to help reveal mechanisms affecting the performance for the doped fibers, such as photodarkening which is potentially associated with clustering effects.</p>
URI: http://hdl.handle.net/11375/11344
Identifier: opendissertations/6318
7370
2262371
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.42 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue