Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11223
Title: Fuel and Core Physics Considerations for a Pressure Tube Supercritical Water Cooled Reactor
Authors: McDonald, Michael H.
Advisor: Novog, D. R.
Department: Engineering Physics and Nuclear Engineering
Keywords: Reactor physics;supercritical water cooled reactor;fuel;Nuclear Engineering;Nuclear Engineering
Publication Date: Oct-2011
Abstract: <p>The supercritical water cooled reactor (SCWR) is a Generation IV reactor concept that features light water coolant in a supercritical state. Canada is developing a pressure tube variant of the supercritical water reactor as an evolution of the CANDU reactor. The main advantages of the pressure tube SCWR are an improved thermal efficiency over current reactors, enhanced safety through passive safety features, and plant simplifications. The objective of this thesis was to investigate current fuel and core designs for the Canadian SCWR concept.</p> <p>Simulations of 2-D lattice cells for fuel assemblies containing 43 and 54 fuel elements were performed using the neutron transport code WIMS-AECL. Safety parameters and fuel burnup performance were investigated here. Three dimensional full core simulations were performed using the diffusion code RFSP. These studies examined batch fueling, cycle length, radial and axial power profiles, linear element ratings, and reduction of axial power peaking through graded enrichment along the fuel channel. Finally, a study of reactivity transients was performed using the FUELPIN heat transfer/point kinetics code.</p> <p>The main results of the studies show that the coolant density change that occurs as water passes through the pseudocritical point strongly affects fuel performance. It is concluded that the 54 element assembly design is acceptable in terms of coolant void reactivity performance with lattice pitch smaller than 26 cm. To meet the burnup target, a fuel enrichment of about 5% is required. From the RFSP studies, this level of fuel enrichment will provide an operating period of 370 days between refueling. Relatively high axial power peaking is observed at the beginning of cycle conditions. A main finding is that the proposed reactor power level of 2540 MWth produces unacceptably high linear element ratings. This is confirmed using the FUELPIN code. A reduction in linear element rating is suggested for consideration.</p>
URI: http://hdl.handle.net/11375/11223
Identifier: opendissertations/6207
7216
2247591
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.07 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue