Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11112
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChilds, Aaronen_US
dc.contributor.advisorNarayanaswamy Balakrishnan, Shui Fengen_US
dc.contributor.advisorNarayanaswamy Balakrishnan, Shui Fengen_US
dc.contributor.authorJin, Hongen_US
dc.date.accessioned2014-06-18T16:53:35Z-
dc.date.available2014-06-18T16:53:35Z-
dc.date.created2011-09-02en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6106en_US
dc.identifier.other7133en_US
dc.identifier.other2215488en_US
dc.identifier.urihttp://hdl.handle.net/11375/11112-
dc.description.abstract<p>Selecting the most probable multinomial or multivariate hypergeometric category isa multiple-decision selection problem. In this package, xed sampling and inversesampling are used for selecting the most probable category. This package aims atproviding functionality to calculate, display and plot the probabilities of correctlyselecting the most probable category under the least favorable configuration for thesetwo sampling types. A function for finding the specified smallest acceptable samplesize (or cell quota and expected sample size) is included as well.</p>en_US
dc.subjectranking and selectionen_US
dc.subjectStatistics and Probabilityen_US
dc.subjectStatistics and Probabilityen_US
dc.titleSELECTING THE MOST PROBABLE CATEGORY: THE R PACKAGE RSen_US
dc.typethesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
925.37 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue