Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11074
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGreedan, John E.en_US
dc.contributor.advisorJacques Barbier, Yurij Mozharivskyjen_US
dc.contributor.advisorJacques Barbier, Yurij Mozharivskyjen_US
dc.contributor.authorRamezanipour, Farshiden_US
dc.date.accessioned2014-06-18T16:53:31Z-
dc.date.available2014-06-18T16:53:31Z-
dc.date.created2011-08-25en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6071en_US
dc.identifier.other7076en_US
dc.identifier.other2194145en_US
dc.identifier.urihttp://hdl.handle.net/11375/11074-
dc.description.abstract<p>A series of layered perovskite-based compounds were synthesized and studied as follows.</p> <p>La<sub>5</sub>Mo<sub>2.76(4)</sub>V<sub>1.25(4)</sub>O<sub>16</sub> is a new pillared-perovskite synthesized by solid state chemistry method. It has layers of corner-sharing octahedra separated by dimers of edge-sharing octahedra, and is the first Mo-based pillared-perovskite whose magnetic structure was determined by neutron diffraction.</p> <p>Ca<sub>2</sub>FeMnO<sub>5</sub> is an oxygen-deficient-perovskite with a brownmillerite-type ordering of oxygen vacancies, resulting in layers of corner-sharing octahedra separated by chains of corner-sharing tetrahedra. The octahedral layer contains mostly (~87%) Mn, while the tetrahedral layer is mainly (~91%) occupied by Fe. Long-range G-type magnetic ordering is present, where the moment on each site is coupled antiferromagnetically relative to all nearest neighbors.</p> <p>Ca<sub>2</sub>FeCoO<sub>5</sub> has a brownmillerite superstructure with space group <em>Pcmb</em>, a rare space group for brownmillerites that requires doubling of one unit cell axis. Ca<sub>2</sub>FeCoO<sub>5 </sub>is the first brownmillerite to contain intra-layer cation ordering. It has a long-range G-type ordering, and is the first brownmillerite to show spin re-orientation as function of temperature.</p> <p>Sr<sub>2</sub>FeMnO<sub>5+y</sub> was synthesized in both air (y~0.5) and argon (y~0), both of which resulted in vacancy-disordered cubic structures. The argon compound has a local brownmillerite structure, i.e. local ordering of vacancies. It has a superparamagnetic state below ~55K, with domains of short range (50Å) G-type ordering at 4K. For the air synthesized compound, y~0.5, long range G-type ordering is observed in ~4% of the sample.</p> <p>Sr<sub>2</sub>Fe<sub>1.9</sub>M<sub>0.1</sub>O<sub>5+y</sub> (M=Mn, Cr, Co; y= 0, 0.5) were synthesized in both air(y~0.5), and argon(y~0). All argon materials are brownmillerites with G-type magnetic ordering, but T<sub>N</sub>’s are significantly different. The air-synthesized Co-material has long range vacancy ordering and magnetic ordering, while the Mn and Cr-materials (air) lack such orderings and both show spin-glass-like transitions.</p> <p>Sr<sub>2</sub>Fe<sub>1.5</sub>Cr<sub>0.5</sub>O<sub>5</sub> has a vacancy-disordered cubic structure, but contains long range G-type magnetic ordering, unlike the other vacancy-disordered materials studied.</p>en_US
dc.subjectPillared Perovskiteen_US
dc.subjectOxygen deficient Perovskiteen_US
dc.subjectBrownmilleriteen_US
dc.subjectCrystal Structureen_US
dc.subjectMagnetismen_US
dc.subjectInorganic Chemistryen_US
dc.subjectMaterials Chemistryen_US
dc.subjectPhysical Chemistryen_US
dc.subjectInorganic Chemistryen_US
dc.titleSYNTHESIS, CRYSTAL STRUCTURE AND MAGNETISM OF PEROVSKITE-BASED TRANSITION METAL OXIDESen_US
dc.typethesisen_US
dc.contributor.departmentChemistryen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.32 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue